LPC2131_32_34_36_38 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 5.1 — 29 July 2011 19 of 45
NXP Semiconductors
LPC2131/32/34/36/38
Single-chip 16/32-bit microcontrollers
6.12.1 Features
Compliant with Serial Peripheral Interface (SPI) specification.
Synchronous, Serial, Full Duplex, Communication.
Combined SPI master and slave.
Maximum data bit rate of one eighth of the input clock rate.
6.13 SSP serial I/O controller
The LPC2131/32/34/36/38 each contain one Serial Synchronous Port controller (SSP).
The SSP controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can
interact with multiple masters and slaves on the bus. However, only a single master and a
single slave can communicate on the bus during a given data transfer. The SSP supports
full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the
slave and from the slave to the master. Often only one of these data flows carries
meaningful data.
6.13.1 Features
Compatible with Motorola SPI, 4-wire TI SSI and National Semiconductor Microwire
buses.
Synchronous Serial Communication.
Master or slave operation.
8-frame FIFOs for both transmit and receive.
Four bits to 16 bits per frame.
6.14 General purpose timers/external event counters
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an
externally supplied clock, and optionally generate interrupts or perform other actions at
specified timer values, based on four match registers. It also includes four capture inputs
to trap the timer value when an input signal transitions, optionally generating an interrupt.
Multiple pins can be selected to perform a single capture or match function, providing an
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.
At any given time only one of peripheral’s capture inputs can be selected as an external
event signal source, i.e., timer’s clock. The rate of external events that can be
successfully counted is limited to PCLK/2. In this configuration, unused capture lines can
be selected as regular timer capture inputs.
6.14.1 Features
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.
External Event Counter or timer operation.
Four 32-bit capture channels per timer/counter that can take a snapshot of the timer
value when an input signal transitions. A capture event may also optionally generate
an interrupt.
Four 32-bit match registers that allow:
Continuous operation with optional interrupt generation on match.
LPC2131_32_34_36_38 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 5.1 — 29 July 2011 20 of 45
NXP Semiconductors
LPC2131/32/34/36/38
Single-chip 16/32-bit microcontrollers
Stop timer on match with optional interrupt generation.
Reset timer on match with optional interrupt generation.
Four external outputs per timer/counter corresponding to match registers, with the
following capabilities:
Set LOW on match.
Set HIGH on match.
Toggle on match.
Do nothing on match.
6.15 Watchdog timer
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of
time if it enters an erroneous state. When enabled, the watchdog will generate a system
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined
amount of time.
6.15.1 Features
Internally resets chip if not periodically reloaded.
Debug mode.
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be
disabled.
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.
Flag to indicate watchdog reset.
Programmable 32-bit timer with internal pre-scaler.
Selectable time period from (T
cy(PCLK)
256 4) to (T
cy(PCLK)
2
32
4) in multiples of
T
cy(PCLK)
4.
6.16 Real-time clock
The Real-Time Clock (RTC) is designed to provide a set of counters to measure time
when normal or idle operating mode is selected. The RTC has been designed to use little
power, making it suitable for battery powered systems where the CPU is not running
continuously (Idle mode).
6.16.1 Features
Measures the passage of time to maintain a calendar and clock.
Ultra-low power design to support battery powered systems.
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and
Day of Year.
Can use either the RTC dedicated 32 kHz oscillator input or clock derived from the
external crystal/oscillator input at XTAL1. Programmable Reference Clock Divider
allows fine adjustment of the RTC.
Dedicated power supply pin can be connected to a battery or the main 3.3 V.
LPC2131_32_34_36_38 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.
Product data sheet Rev. 5.1 — 29 July 2011 21 of 45
NXP Semiconductors
LPC2131/32/34/36/38
Single-chip 16/32-bit microcontrollers
6.17 Pulse width modulator
The PWM is based on the standard Timer block and inherits all of its features, although
only the PWM function is pinned out on the LPC2131/32/34/36/38. The Timer is designed
to count cycles of the peripheral clock (PCLK) and optionally generate interrupts or
perform other actions when specified timer values occur, based on seven match registers.
The PWM function is also based on match register events.
The ability to separately control rising and falling edge locations allows the PWM to be
used for more applications. For instance, multi-phase motor control typically requires
three non-overlapping PWM outputs with individual control of all three pulse widths and
positions.
Two match registers can be used to provide a single edge controlled PWM output. One
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.
The other match register controls the PWM edge position. Additional single edge
controlled PWM outputs require only one match register each, since the repetition rate is
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.
Three match registers can be used to provide a PWM output with both edges controlled.
Again, the MR0 match register controls the PWM cycle rate. The other match registers
control the two PWM edge positions. Additional double edge controlled PWM outputs
require only two match registers each, since the repetition rate is the same for all PWM
outputs.
With double edge controlled PWM outputs, specific match registers control the rising and
falling edge of the output. This allows both positive going PWM pulses (when the rising
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling
edge occurs prior to the rising edge).
6.17.1 Features
Seven match registers allow up to six single edge controlled or three double edge
controlled PWM outputs, or a mix of both types.
The match registers also allow:
Continuous operation with optional interrupt generation on match.
Stop timer on match with optional interrupt generation.
Reset timer on match with optional interrupt generation.
Supports single edge controlled and/or double edge controlled PWM outputs. Single
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the
output is a constant LOW. Double edge controlled PWM outputs can have either edge
occur at any position within a cycle. This allows for both positive going and negative
going pulses.
Pulse period and width can be any number of timer counts. This allows complete
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will
occur at the same repetition rate.
Double edge controlled PWM outputs can be programmed to be either positive going
or negative going pulses.

LPC2131FBD64,151

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
IC MCU 32BIT 32KB FLASH 64LQFP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union