Rev C 9/4/14 13 175MHZ, FEMTOCLOCK® VCXO BASED SONET/SDH JITTER
ATTENUATORS
843002I-40 DATA SHEET
VFQFN EPAD Thermal Release Path
In order to maximize both the removal of heat from the package and
the electrical performance, a land pattern must be incorporated on
the Printed Circuit Board (PCB) within the footprint of the package
corresponding to the exposed metal pad or exposed heat slug on the
package, as shown in Figure 4. The solderable area on the PCB, as
defined by the solder mask, should be at least the same size/shape
as the exposed pad/slug area on the package to maximize the
thermal/electrical performance. Sufficient clearance should be
designed on the PCB between the outer edges of the land pattern
and the inner edges of pad pattern for the leads to avoid any shorts.
While the land pattern on the PCB provides a means of heat transfer
and electrical grounding from the package to the board through a
solder joint, thermal vias are necessary to effectively conduct from
the surface of the PCB to the ground plane(s). The land pattern must
be connected to ground through these vias. The vias act as “heat
pipes”. The number of vias (i.e. “heat pipes”) are application specific
and dependent upon the package power dissipation as well as
electrical conductivity requirements. Thus, thermal and electrical
analysis and/or testing are recommended to determine the minimum
number needed. Maximum thermal and electrical performance is
achieved when an array of vias is incorporated in the land pattern. It
is recommended to use as many vias connected to ground as
possible. It is also recommended that the via diameter should be 12
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is
desirable to avoid any solder wicking inside the via during the
soldering process which may result in voids in solder between the
exposed pad/slug and the thermal land. Precautions should be taken
to eliminate any solder voids between the exposed heat slug and the
land pattern. Note: These recommendations are to be used as a
guideline only. For further information, please refer to the Application
Note on the Surface Mount Assembly of Amkor’s
Thermally/Electrically Enhance Leadframe Base Package, Amkor
Technology.
Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)
SOLDERSOLDER
PINPIN EXPOSED HEAT SLUG
PIN PAD PIN PADGROUND PLANE LAND PATTERN
(GROUND PAD)
THERMAL VIA
Rev C 9/4/14 14 175MHZ, FEMTOCLOCK® VCXO BASED SONET/SDH JITTER
ATTENUATORS
843002I-40 DATA SHEET
Termination for 3.3V LVPECL Outputs
The clock layout topology shown below is a typical termination for
LVPECL outputs. The two different layouts mentioned are
recommended only as guidelines.
The differential output is a low impedance follower output that
generate ECL/LVPECL compatible outputs. Therefore, terminating
resistors (DC current path to ground) or current sources must be
used for functionality. These outputs are designed to drive 50
transmission lines. Matched impedance techniques should be
used to maximize operating frequency and minimize signal
distortion. Figures 5A and 5B show two different layouts which are
recommended only as guidelines. Other suitable clock layouts may
exist and it would be recommended that the board designers
simulate to guarantee compatibility across all printed circuit and
clock component process variations.
Figure 5A. 3.3V LVPECL Output Termination Figure 5B. 3.3V LVPECL Output Termination
R1
84
R2
84
3.3V
R3
125
R4
125
Z
o
= 50
Z
o
= 50
LVPECL Input
3.3V
3.3V
+
_
175MHZ, FEMTOCLOCK® VCXO BASED SONET/SDH JITTER
ATTENUATORS
15 Rev C 9/4/14
843002I-40 DATA SHEET
Termination for 2.5V LVPECL Outputs
Figure 6A and Figure 6B show examples of termination for 2.5V
LVPECL driver. These terminations are equivalent to terminating
50 to V
CC
– 2V. For V
CCO
= 2.5V, the V
CCO
– 2V is very close to
ground level. The R3 in Figure 6B can be eliminated and the
termination is shown in Figure 6C.
Figure 6A. 2.5V LVPECL Driver Termination Example
Figure 6C. 2.5V LVPECL Driver Termination Example
Figure 6B. 2.5V LVPECL Driver Termination Example
2.5V LVPECL Driver
V
CC
= 2.5V
2.5V
2.5V
50
Ω
50
Ω
R1
250
Ω
R3
250
Ω
R2
62.5
Ω
R4
62.5
Ω
+
2.5V LVPECL Driver
V
CC
= 2.5V
2.5V
50
Ω
50
Ω
R1
50
Ω
R2
50
Ω
+
2.5V LVPECL Driver
V
CC
= 2.5V
2.5V
50Ω
50Ω
R1
50
Ω
R2
50
Ω
R3
18
Ω
+

843002AKI-40LFT

Mfr. #:
Manufacturer:
IDT
Description:
Clock Synthesizer / Jitter Cleaner 2 LVPECL OUT VCXO/FEMTOCLOCK
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet