Data Sheet ADuM3440/ADuM3441/ADuM3442
Rev. D | Page 19 of 24
The voltage induced across the receiving coil is given by
V = (−dβ/dt)∑ πr
n
2
; n = 1, 2, … , N
where:
β is magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r
n
is the radius of the n
th
turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM344x and
an imposed requirement that the induced voltage be at most
50% of the 0.5 V margin at the decoder, a maximum allowable
magnetic field is calculated as shown in Figure 18.
MAGNETIC FIELD FREQUENCY (Hz)
100
MAXIMUM ALLOWABLE MAGNETIC FLUX
DENSITY (kgauss)
0.001
1M
10
0.
01
1k 10k 10M
0.1
1
100M100k
06837-019
Figure 18. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz, the
maximum allowable magnetic field of 0.2 kgauss induces a
voltage of 0.25 V at the receiving coil. This is about 50% of the
sensing threshold and does not cause a faulty output transition.
Similarly, if such an event were to occur during a transmitted
pulse (and was of the worst-case polarity), it would reduce the
received pulse from >1.0 V to 0.75 Vstill well above the 0.5 V
sensing threshold of the decoder.
The preceding magnetic flux density values correspond to
specific current magnitudes at given distances from the
ADuM344x transformers. Figure 19 expresses these allowable
current magnitudes as a function of frequency for selected
distances. As shown, the ADuM344x is extremely immune
and can be affected only by extremely large currents operated
at high frequency very close to the component. For the 1 MHz
example noted, one would have to place a 0.5 kA current 5 mm
away from the ADuM344x to affect the component’s operation.
MAGNETIC FIELD FREQUENCY (Hz)
MAXIMUM ALLOWABLE CURRENT (kA)
1000
100
10
1
0.1
0.01
1k 10k 100M100k 1M 10M
DISTANCE = 5mm
DISTANCE = 1m
DISTANCE = 100mm
06837-020
Figure 19. Maximum Allowable Current
for Various Current-to-ADuM344x Spacings
Note that at combinations of strong magnetic field and high
frequency, any loops formed by printed circuit board traces
could induce error voltages sufficiently large enough to trigger
the thresholds of succeeding circuitry. Care should be taken in
the layout of such traces to avoid this possibility.
POWER CONSUMPTION
The supply current at a given channel of the ADuM344x
isolator is a function of the supply voltage, the channel’s data
rate, and the channel’s output load.
For each input channel, the supply current is given by
I
DDI
= I
DDI (Q)
f ≤ 0.5 f
r
I
DDI
= I
DDI (D)
× (2f f
r
) + I
DDI (Q)
f > 0.5 f
r
For each output channel, the supply current is given by
I
DDO
= I
DDO (Q)
f ≤ 0.5 f
r
I
DDO
= (I
DDO (D)
+ (0.5 × 10
−3
) × C
L
× V
DDO
) × (2f − f
r
) + I
DDO (Q)
f > 0.5 f
r
where:
I
DDI (D)
, I
DDO (D)
are the input and output dynamic supply currents
per channel (mA/Mbps).
C
L
is the output load capacitance (pF).
V
DDO
is the output supply voltage (V).
f is the input logic signal frequency (MHz); it is half of the input
data rate expressed in units of Mbps.
f
r
is the input stage refresh rate (Mbps).
I
DDI (Q)
, I
DDO (Q)
are the specified input and output quiescent
supply currents (mA).
To calculate the total V
DD1
and V
DD2
supply current, the supply
currents for each input and output channel corresponding to
V
DD1
and V
DD2
are calculated and totaled. Figure 8 and Figure 9
provide per-channel supply currents as a function of data rate
for an unloaded output condition. Figure 10 provides per-
channel supply current as a function of data rate for a 15 pF
output condition. Figure 11 through Figure 15 provide total
V
DD1
and V
DD2
supply current as a function of data rate for
ADuM3440/ADuM3441/ADuM3442 channel configurations.
ADuM3440/ADuM3441/ADuM3442 Data Sheet
Rev. D | Page 20 of 24
INSULATION LIFETIME
All insulation structures eventually break down when subjected
to voltage stress over a sufficiently long period. The rate of
insulation degradation is dependent on the characteristics of
the voltage waveform applied across the insulation. In addition
to the testing performed by the regulatory agencies, Analog
Devices carries out an extensive set of evaluations to determine
the lifetime of the insulation structure within the ADuM344x.
Analog Devices performs accelerated life testing using voltage levels
higher than the rated continuous working voltage. Acceleration
factors for several operating conditions are determined. These
factors allow calculation of the time to failure at the actual working
voltage. The values shown in Figure 20 summarize the peak voltage
for 50 years of service life for a bipolar ac operating condition, and
the maximum CSA/VDE approved working voltages. In many
cases, the approved working voltage is higher than the 50-year
service life voltage. Operation at these high working voltages
can lead to shortened insulation life in some cases.
The insulation lifetime of the ADuM344x depends on the
voltage waveform type imposed across the isolation barrier.
The iCoupler insulation structure degrades at different rates
depending on whether the waveform is bipolar ac, unipolar ac,
or dc. Figure 20, Figure 21, and Figure 22 illustrate these
different isolation voltage waveforms.
Bipolar ac voltage is the most stringent environment. The goal
of a 50-year operating lifetime under the ac bipolar condition
determines the maximum working voltage recommended by
Analog Devices.
In the case of unipolar ac or dc voltage, the stress on the insulation
is significantly lower, which allows operation at higher working
voltages while still achieving a 50-year service life. The working
voltages listed in Table 10 can be applied while maintaining the
50-year minimum lifetime provided the voltage conforms to
either the unipolar ac or dc voltage cases. Any cross insulation
voltage waveform that does not conform to Figure 21 or Figure 22
should be treated as a bipolar ac waveform and its peak voltage
should be limited to the 50-year lifetime voltage value listed in
Table 10.
Note that the voltage presented in Figure 21 is shown as sinusoidal
for illustration purposes only. It is meant to represent any voltage
waveform varying between 0 V and some limiting value. The
limiting value can be positive or negative, but the voltage cannot
cross 0 V.
0V
RATED PEAK VOLTAGE
06837-021
Figure 20. Bipolar AC Waveform
0V
RATED PEAK VOLTAGE
06837-022
Figure 21. Unipolar AC Waveform
0V
RATED PEAK VOLTAGE
06837-023
Figure 22. DC Waveform
Data Sheet ADuM3440/ADuM3441/ADuM3442
Rev. D | Page 21 of 24
OUTLINE DIMENSIONS
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-013-AA
10.50 (0.4134)
10.10 (0.3976)
0.30 (0.0118)
0.10 (0.0039)
2.65 (0.1043)
2.35 (0.0925)
10.65 (0.4193)
10.00 (0.3937)
7.60 (0.2992)
7.40 (0.2913)
0.75 (0.0295)
0.25 (0.0098)
45°
1.27 (0.0500)
0.40 (0.0157)
COPLANARITY
0.10
0.33 (0.0130)
0.20 (0.0079)
0.51 (0.0201)
0.31 (0.0122)
SEATING
PLANE
16
9
8
1
1.27 (0.0500)
BSC
03-27-2007-B
Figure 23. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body (RW-16)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE
Model
1, 2
Number of
Inputs,
V
DD1
Side
Number of
Inputs,
V
DD2
Side
Maximum
Data Rate
(Mbps)
Maximum
Propagation
Delay, 5 V (ns)
Maximum
Pulse Width
Distortion (ns)
Temperature
Range
Package
Description
Package
Option
ADuM3440CRWZ 4 0 150 32 2 40°C to +105°C 16-Lead SOIC_W RW-16
ADuM3441CRWZ 3 1 150 32 2 40°C to +105°C 16-Lead SOIC_W RW-16
ADuM3442CRWZ 2 2 150 32 2 40°C to +105°C 16-Lead SOIC_W RW-16
1
Z = RoHS Compliant Part.
2
Tape and reel are available. The addition of an -RL suffix designates a 13” (1,000 units) tape-and-reel option.

ADUM3441CRWZ-RL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Digital Isolators Quad-CH High Speed Digital
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet