13
Notes:
1. The F
min
values are based on a set of 16 noise  gure measurements made at 16 di erent impedances using an ATF NP5 test system. From these
measurements a true F
min
is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end
of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the e ect of four plated through via holes
connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch
diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point.
ATF-33143 Typical Noise Parameters
V
DS
= 4V, I
DS
= 80 mA
Freq. F
min

opt
R
n/50
G
a
GHz dB Mag. Ang. - dB
0.5 0.30 0.42 34.50 0.08 26.23
0.9 0.35 0.32 46.40 0.07 21.96
1.0 0.35 0.32 50.40 0.07 21.16
1.5 0.40 0.23 74.80 0.06 18.47
1.8 0.42 0.20 98.80 0.05 17.18
2.0 0.45 0.19 114.10 0.05 16.48
2.5 0.49 0.23 153.70 0.04 15.09
3.0 0.55 0.28 171.50 0.03 13.70
4.0 0.68 0.38 -156.70 0.04 11.85
5.0 0.75 0.48 -133.30 0.07 10.49
6.0 0.90 0.52 -110.70 0.13 9.27
7.0 1.00 0.57 -89.60 0.25 8.27
8.0 1.12 0.62 -70.80 0.43 7.28
9.0 1.19 0.67 -54.60 0.65 6.66
10.0 1.33 0.69 -40.80 0.85 6.31
ATF-33143 Typical Scattering Parameters, V
DS
= 4V, I
DS
= 80 mA
Freq. S
11
S
21
S
12
S
22
MSG/MAG
(GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. (dB)
0.5 0.86 -77.20 23.39 14.76 132.20 -28.82 0.036 55.30 0.26 -125.40 26.13
0.8 0.77 -116.60 20.60 10.71 109.20 -25.86 0.051 43.40 0.34 -154.80 23.22
1.0 0.76 -124.00 19.93 9.91 104.80 -25.49 0.053 41.70 0.36 -159.50 22.72
1.5 0.73 -153.00 17.09 7.15 87.10 -23.86 0.064 35.20 0.39 -179.10 20.48
1.8 0.72 -165.80 15.66 6.06 78.90 -23.31 0.068 32.70 0.41 172.40 19.50
2.0 0.72 -172.90 14.77 5.47 74.00 -22.95 0.071 31.00 0.42 167.30 18.87
2.5 0.72 170.10 12.89 4.41 62.50 -22.03 0.079 27.20 0.45 158.50 17.47
3.0 0.73 157.40 11.27 3.66 53.00 -21.39 0.085 23.50 0.48 151.00 16.34
4.0 0.74 136.00 8.84 2.77 35.30 -20.00 0.100 15.30 0.50 138.80 13.59
5.0 0.75 116.70 7.09 2.26 17.70 -18.86 0.114 4.80 0.51 124.80 11.56
6.0 0.77 97.70 5.57 1.90 -0.70 -17.99 0.126 -7.80 0.52 108.40 10.17
7.0 0.79 80.00 4.00 1.58 -18.70 -17.47 0.134 -21.30 0.55 90.90 8.84
8.0 0.82 64.50 2.55 1.34 -34.50 -17.34 0.136 -32.80 0.58 75.40 7.93
9.0 0.83 50.50 1.36 1.17 -48.70 -17.03 0.141 -42.80 0.61 63.30 6.98
10.0 0.86 36.50 0.43 1.05 -63.80 -16.49 0.150 -54.60 0.63 51.60 6.96
11.0 0.88 21.70 -0.65 0.93 -79.90 -16.38 0.152 -67.80 0.66 38.10 6.73
12.0 0.90 7.40 -1.85 0.81 -95.60 -16.66 0.147 -80.60 0.70 22.10 6.26
13.0 0.91 -4.80 -3.39 0.68 -110.20 -17.21 0.138 -92.60 0.73 6.40 5.21
14.0 0.91 -15.40 -4.64 0.59 -122.00 -17.59 0.132 -101.10 0.76 -5.00 4.20
15.0 0.92 -27.30 -5.57 0.53 -134.80 -17.79 0.129 -111.20 0.79 -15.40 3.98
16.0 0.93 -40.40 -6.46 0.47 -147.60 -17.65 0.131 -121.90 0.81 -25.30 3.73
17.0 0.94 -52.20 -7.40 0.43 -161.40 -17.85 0.128 -134.30 0.82 -37.50 3.65
18.0 0.93 -61.20 -8.75 0.36 -172.10 -18.56 0.118 -143.10 0.84 -49.30 2.24
FREQUENCY (GHz)
Figure 26. MSG/MAG and |S
21
|
2
vs. Frequency at 4V, 80 mA.
MSG/MAG and |S
21
|
2
(dB)
020
40
30
20
10
0
-10
10515
MSG
MAG
|S
21
|
2
14
Noise Parameter Applications Information
F
min
values at 2 GHz and higher are based on
measurements while the F
mins
below 2 GHz have been
extrapolated. The F
min
values are based on a set of
16 noise  gure measurements made at 16 di erent
impedances using an ATN NP5 test system. From these
measurements, a true F
min
is calculated. F
min
represents
the true minimum noise  gure of the device when the
device is presented with an impedance matching network
that transforms the source impedance, typically 50Ω, to
an impedance represented by the re ection coe cient
o
. The designer must design a matching network that
will present
o
to the device with minimal associated
circuit losses. The noise  gure of the completed ampli er
is equal to the noise  gure of the device plus the losses
of the matching network preceding the device. The
noise  gure of the device is equal to F
min
only when the
device is presented with
o
. If the re ection coe cient
of the matching network is other than
o
, then the noise
gure of the device will be greater than F
min
based on
the following equation.
NF = F
min
+ 4 R
n
|
s
o
|
2
Zo (|1 +
o
|
2
)(1 –
s
|
2
)
Where R
n
/Z
o
is the normalized noise resistance,
o
is
the optimum re ection coe cient required to produce
F
min
and
s
is the re ection coe cient of the source
impedance actually presented to the device. The losses
of the matching networks are non-zero and they will
also add to the noise  gure of the device creating a
higher ampli er noise  gure. The losses of the matching
networks are related to the Q of the components and
associated printed circuit board loss.
o
is typically fairly
low at higher frequencies and increases as frequency is
lowered. Larger gate width devices will typically have a
lower
o
as compared to narrower gate width devices.
Typically for FETs, the higher
o
usually infers that an
impedance much higher than 50Ω is required for the
device to produce F
min
. At VHF frequencies and even
lower L Band frequencies, the required impedance can
be in the vicinity of several thousand ohms. Matching to
such a high impedance requires very hi-Q components
in order to minimize circuit losses. As an example at
900 MHz, when airwwound coils (Q> 100) are used for
matching networks, the loss can still be up to 0.25 dB
which will add directly to the noise  gure of the device.
Using muiltilayer molded inductors with Qs in the 30 to
50 range results in additional loss over the airwound coil.
Losses as high as 0.5 dB or greater add to the typical 0.15
dB F
min
of the device creating an ampli er noise  gure
of nearly 0.65 dB. A discussion concerning calculated
and measured circuit losses and their e ect on ampli er
noise  gure is covered in Avago Application 1085.
Reliability Data
Nominal Failures per million (FPM) 90% con dence Failures per million (FPM)
for di erent durations for di erent durations
Channel (FITs) 1 year 5 year 10 year 30 year (FITs) 1 year 5 year 10 year 30 year
Temperature 1000 1000
(
o
C) hours hours
100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
125 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 11
140 <0.1 <0.1 <0.1 <0.1 160 <0.1 <0.1 6 160 9.3K
150 <0.1 <0.1 2 140 26K <0.1 0.3 780 8800 131K
160 <0.1 <0.1 920 21K 370K <0.1 67 24K 120K 520K
180 <0.1 4400 450K 830K 1000K 21 53K 590K 850K 1000K
NOT
recommended
Predicted failures with temperature extrapolated from failure distribution and activation energy data of higher temperature
operational life STRIFE of PHEMT process
15
ATF-33143 Die Model
This model can be used as a design tool. It has been tested
on MDS for various speci cations. However, for more precise
and accurate design, please refer to the measured data in
this data sheet. For future improvements Avago reserves
the right to change these models without prior notice.
ATF-33143 Model
NFET=yes
PFET=no
Vto=0.95
Beta=0.48
Lambda=0.09
Alpha=4
B=0.8
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=0.2
Delta2=
Gscap=3
Cgs=1.6 pF
Gdcap=3
Cgd=0.32 pF
Rgd=
Tqm=
Vmax=
Fc=
Rd=.125
Rg=1
Rs=0.0625
Ld=0.00375 nH
Lg-0.00375 nH
Ls=0.00125 nH
Cds=0.08 pF
Crf=0.1
Rc=62.5
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
Taumd1=no
Fnc=1E6
R=0.17
C=0.2
P=0.65
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
Al lParams=
Statz Model
MESFETM1
GATE
SOURCE
INSIDE Package
Port
G
Num=1
C
C1
C=0.1 pF
Port
S1
Num=2
SOURCE
DRAIN
Port
S2
Num=4
Port
D
Num=4
L
L6
L=0.2 nH
R=0.001
C
C2
C=0.11 pF
L
L7
C=0.6 nH
R=0.001
MSub
TLINP
TL4
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL10
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
VIA2
V1
D=20 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40 mil
VIA2
V2
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL3
Z=Z2 Ohm
L=25 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINPTL9
Z=Z2 Ohm
L=10.0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
VAR
VAR1
K=5
Z2=85
Z1=30
Var
Ean
TLINP
TL1
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL8
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL7
Z=Z2/2 Ohm
L=5.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=26.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL6
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
VIA2
V3
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
VIA2
V4
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
L
L1
L=0.6 nH
R=0.001
L
L4
L=0.2 nH
R=0.001
GaAsFET
FET1
Model=MESFETN1
Mode=nonlinear
MSUB
MSub1
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+0.34 mil
T=0.15 mil
TanD=D
Rough=D mil

ATF-33143-BLKG

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
RF JFET Transistors Transistor GaAs Low Noise
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet