MP1584 – 3A, 1.5MHz, 28V STEP-DOWN CONVERTER
MP1584 Rev. 1.0 www.MonolithicPower.com 7
8/8/2011 MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.
© 2011 MPS. All Rights Reserved.
BLOCK DIAGRAM
--
+
--
+
1.5ms SS
Gm Error Amp
SS
2.6V
5V
I
SW
COMP
I
SW
VIN
BST
SW
GND
FREQ
COMP
FB
EN
SS
0V8
REFERENCE UVLO/
THERMAL
SHUTDOWN
INTERNAL
REGULATORS
OSCILLATOR
--
+
SW
--
+
Level
Shift
CLK
V
OUT
V
IN
V
OUT
Figure 1—Functional Block Diagram
OPERATION
The MP1584 is a variable frequency,
non-synchronous, step-down switching
regulator with an integrated high-side high
voltage power MOSFET. It provides a highly
efficient solution with current mode control for
fast loop response and easy compensation. It
features a wide input voltage range, internal
soft-start control and precision current limiting.
Its very low operational quiescent current
makes it suitable for battery powered
applications.
PWM Control
At moderate to high output current, the MP1584
operates in a fixed frequency, peak current
control mode to regulate the output voltage. A
PWM cycle is initiated by the internal clock. The
power MOSFET is turned on and remains on
until its current reaches the value set by the
COMP voltage. When the power switch is off, it
remains off for at least 100ns before the next
cycle starts. If, in one PWM period, the current
in the power MOSFET does not reach the
COMP set current value, the power MOSFET
remains on, saving a turn-off operation.
MP1584 – 3A, 1.5MHz, 28V STEP-DOWN CONVERTER
MP1584 Rev. 1.0 www.MonolithicPower.com 8
8/8/2011 MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.
© 2011 MPS. All Rights Reserved.
Error Amplifier
The error amplifier compares the FB pin voltage
with the internal reference (REF) and outputs a
current proportional to the difference between
the two. This output current is then used to
charge the external compensation network to
form the COMP voltage, which is used to
control the power MOSFET current.
During operation, the minimum COMP voltage
is clamped to 0.9V and its maximum is clamped
to 2.0V. COMP is internally pulled down to GND
in shutdown mode. COMP should not be pulled
up beyond 2.6V.
Internal Regulator
Most of the internal circuitries are powered from
the 2.6V internal regulator. This regulator takes
the VIN input and operates in the full VIN range.
When VIN is greater than 3.0V, the output of
the regulator is in full regulation. When VIN is
lower than 3.0V, the output decreases.
Enable Control
The MP1584 has a dedicated enable control pin
(EN). With high enough input voltage, the chip
can be enabled and disabled by EN which has
positive logic. Its falling threshold is a precision
1.2V, and its rising threshold is 1.5V (300mV
higher).
When floating, EN is pulled up to about 3.0V by
an internal 1µA current source so it is enabled.
To pull it down, 1µA current capability is
needed.
When EN is pulled down below 1.2V, the chip is
put into the lowest shutdown current mode.
When EN is higher than zero but lower than its
rising threshold, the chip is still in shutdown
mode but the shutdown current increases
slightly.
Under-Voltage Lockout (UVLO)
Under-voltage lockout (UVLO) is implemented
to protect the chip from operating at insufficient
supply voltage. The UVLO rising threshold is
about 3.0V while its falling threshold is a
consistent 2.6V.
Internal Soft-Start
The soft-start is implemented to prevent the
converter output voltage from overshooting
during startup. When the chip starts, the
internal circuitry generates a soft-start voltage
(SS) ramping up from 0V to 2.6V. When it is
lower than the internal reference (REF), SS
overrides REF so the error amplifier uses SS as
the reference. When SS is higher than REF,
REF regains control.
Thermal Shutdown
Thermal shutdown is implemented to prevent
the chip from operating at exceedingly high
temperatures. When the silicon die temperature
is higher than its upper threshold, it shuts down
the whole chip. When the temperature is lower
than its lower threshold, the chip is enabled
again.
Floating Driver and Bootstrap Charging
The floating power MOSFET driver is powered
by an external bootstrap capacitor. This floating
driver has its own UVLO protection. This
UVLO’s rising threshold is 2.2V with a threshold
of 150mV.
The bootstrap capacitor is charged and
regulated to about 5V by the dedicated internal
bootstrap regulator. When the voltage between
the BST and SW nodes is lower than its
regulation, a PMOS pass transistor connected
from VIN to BST is turned on. The charging
current path is from VIN, BST and then to SW.
External circuit should provide enough voltage
headroom to facilitate the charging.
As long as VIN is sufficiently higher than SW,
the bootstrap capacitor can be charged. When
the power MOSFET is ON, VIN is about equal
to SW so the bootstrap capacitor cannot be
charged. When the external diode is on, the
difference between VIN and SW is largest, thus
making it the best period to charge. When there
is no current in the inductor, SW equals the
output voltage V
OUT
so the difference between
V
IN
and V
OUT
can be used to charge the
bootstrap capacitor.
MP1584 – 3A, 1.5MHz, 28V STEP-DOWN CONVERTER
MP1584 Rev. 1.0 www.MonolithicPower.com 9
8/8/2011 MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.
© 2011 MPS. All Rights Reserved.
At higher duty cycle operation condition, the
time period available to the bootstrap charging
is less so the bootstrap capacitor may not be
sufficiently charged.
In case the internal circuit does not have
sufficient voltage and the bootstrap capacitor is
not charged, extra external circuitry can be
used to ensure the bootstrap voltage is in the
normal operational region. Refer to External
Bootstrap Diode in Application section.
The DC quiescent current of the floating driver
is about 20µA. Make sure the bleeding current
at the SW node is higher than this value, such
that:
A20
)2R1R(
V
I
O
O
Current Comparator and Current Limit
The power MOSFET current is accurately
sensed via a current sense MOSFET. It is then
fed to the high speed current comparator for the
current mode control purpose. The current
comparator takes this sensed current as one of
its inputs. When the power MOSFET is turned
on, the comparator is first blanked till the end of
the turn-on transition to avoid noise issues. The
comparator then compares the power switch
current with the COMP voltage. When the
sensed current is higher than the COMP
voltage, the comparator output is low, turning
off the power MOSFET. The cycle-by-cycle
maximum current of the internal power
MOSFET is internally limited.
Startup and Shutdown
If both VIN and EN are higher than their
appropriate thresholds, the chip starts. The
reference block starts first, generating stable
reference voltage and currents, and then the
internal regulator is enabled. The regulator
provides stable supply for the remaining
circuitries.
While the internal supply rail is up, an internal
timer holds the power MOSFET OFF for about
50µs to blank the startup glitches. When the
internal soft-start block is enabled, it first holds
its SS output low to ensure the remaining
circuitries are ready and then slowly ramps up.
Three events can shut down the chip: EN low,
VIN low and thermal shutdown. In the shutdown
procedure, power MOSFET is turned off first to
avoid any fault triggering. The COMP voltage
and the internal supply rail are then pulled
down.
Programmable Oscillator
The MP1584 oscillating frequency is set by an
external resistor, R
freq
from the FREQ pin to
ground. The value of R
freq
can be calculated
from:

freq
1.1
s
180000
R(k)
f(kHz)


MP1584EN-LF-Z

Mfr. #:
Manufacturer:
Monolithic Power Systems (MPS)
Description:
Switching Voltage Regulators 3A 1.5MHz 28V Nonsync Buck
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet