13
Notes on Thermal Calculation
Application and environmental design for ACPL-344JT must ensure that the junction temperature of the internal ICs and
LED within the gate driver optocoupler do not exceed 150°C. The following equations calculate the maximum power
dissipation and its corresponding eect on junction temperatures.
LED Junction Temperature = (A
EA
× P
E
) + (A
EI
× P
I
) + (A
EO
× P
O
) + T
A
Input IC Junction Temperature = (A
EI
× P
E
) + (A
IA
× P
I
) + (A
IO
× P
O
) + T
A
Output IC Junction Temperature = (A
EO
× P
E
) + (A
IO
× P
I
) + (A
OA
× P
O
) + T
A
P
E
—LED Power Dissipation
P
I
—Input IC Power Dissipation
P
O
—Output IC Power Dissipation
Calculation of LED Power Dissipation
LED Power Dissipation, P
E
= I
F(LED)
(Recommended Max) × V
F(LED)
(125°C) × Duty Cycle
Example: P
E
= 16 mA × 1.25 × 50% duty cycle = 10 mW
Calculation of Input IC Power Dissipation
Input IC Power Dissipation, P
I
= I
CC1 (Max)
× V
CC1
(Recommended Max.)
Example: P
I
= 6 mA × 18 V = 108 mW
VEE1
VEE2
40 mm
60 mm
VEE1
VEE2
40 mm
60 mm
PCB Top Side
PCB Bottom Side
Thermal Characteristics are based on the ground planes layout of the evaluation PCB, shown as follows:
14
Calculation of Output IC Power Dissipation
Output IC Power Dissipation, P
O
= V
CC2
(Recommended Max.) × I
CC2
(Max.) + P
HS
+ P
LS
P
HS
—High Side Switching Power Dissipation
P
LS
—Low Side Switching Power Dissipation
P
HS
= (V
CC2
× Q
G
× f
PWM
) × R
OH(MAX)
/(R
OH(MAX)
+ R
GH
)/2
P
LS
= (V
CC2
× Q
G
× f
PWM
) × R
OL(MAX)
/(R
OL(MAX)
+ R
GL
)/2
Q
G
—IGBT Gate Charge at Supply Voltage
f
PWM
—LED Switching Frequency
R
OH(MAX)
—Maximum High Side Output Impedance—V
OH(MIN)
/I
OH(MIN)
R
GH
—Gate Charging Resistance
R
OL(MAX)
—Maximum Low Side Output Impedance—V
OL(MIN)
/I
OL(MIN)
R
GL
—Gate Discharging Resistance
Example:
R
OH(MAX)
= (V
CC2
– V
OH(MIN)
)/I
OH(MIN)
= 3V/0.75A = 4Ω
R
OL(MAX)
= V
OL(MIN)
/ I
OL(MIN)
= 2.5V/1A = 2.5Ω
P
HS
= (20V × 1 μC × 10 kHz) × 4Ω/(4Ω + 10Ω)/2 = 28.57 mW
P
LS
= (20V × 1 μC × 10 kHz) × 2.5Ω/(2.5Ω + 10Ω)/2 = 20 mW
P
O
= 20 V × 13.6 mA + 28.57 mW + 20 mW = 320.57 mW
Calculation of Junction Temperature
LED Junction Temperature = 176.1 °C/W × 10 mW + 35.4 °C/W × 108 mW + 33.1 × 320.57 mW + T
A
= 16.2°C + T
A
Input IC Junction Temperature = 35.4 °C/W × 10 mW + 92 °C/W × 108 mW + 25.6 × 320.57 mW + T
A
= 18.5°C + T
A
Output IC Junction Temperature = 33.1 °C/W × 10 mW + 25.6 °C/W × 108 mW + 76.7 × 320.57 mW + T
A
= 27.7°C + T
A
15
9
9.5
10
10.5
11
11.5
12
0 20 40 60 80 100 120 140
I
CC2
—Input Supply Current (mA)
I
CCL2
I
CCH2
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4
4.1
4.2
–40 20
–40 20
0 20 40 60 80 100 120 140
I
CC1
—Input Supply Current (mA)
I
CCL1
I
CCH1
17
17.5
18
18.5
19
19.5
20
V
OH
—Output High Voltage (V)
0.01
0.10
1.00
10.00
100.00
1.2 1.3 1.4 1.5 1.6
V
F
—Forward Voltage (V)
I
F
—Forward Current (mA)
I
TH
—LED Current Threshold (mA)
T
A
= 25°C
1
1.5
2
2.5
3
3.5
4
–50 –25 0 25 50 75 100 125
I
TH+
I
TH–
T
A
—Temperature (°C)
T
A
—Temperature (°C)
T
A
—Temperature (°C)
0
1
2
3
4
5
6
7
8
0 1 2 3 4 5
–40°C
25°C
125°C
V
OL
—Output Low Voltage (V)
0 0.5 1 1.5 2.5
I
OH
—Output High Current (A)
I
OL
—Output Low Current (A)
2
–40°C
25°C
125°C
Figure 8. I
CC1
Across Temperature. Figure 9. I
CC2
Across Temperature.
Figure 10. I
F
vs. V
F
. Figure 11. I
TH
Across Temperature.
Figure 12. V
OH
vs. I
OH
. Figure 13. V
OL
vs. I
OL
.

ACPL-344JT-500E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
High Speed Optocouplers Auto Optocoupler
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet