Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.
Should a safety concern arise regarding this product, please be sure to contact us immediately.
Multilayer NTC Thermistors
25
100
75
Ambient temperature (°C)
Maximum power dissipation
/ Rated maximum power dissipation (%)
125
50
Multilayer NTC Thermistors
Series: ERTJ
Handling Precautions
1. Circuit Design
1.1
Operating Temperature and Storage Temperature
When operating a components-mounted circuit,
please be sure to observe the “Operating Temperature
Range”, written in delivery specifications. Please
remember not to use the product under the condition
that exceeds the specified maximum temperature.
Storage temperature of PCB after mounting
Thermistors, which is not operated, should be within
the specified “Storage Temperature Range” in the
delivery specifications.
1.2 Operating Power
The electricity applied to between terminals of
Thermistors should be under the specified maximum
power dissipation.
There are possibilities of breakage and burn-out due
to excessive self-heating of Thermistors, if the power
exceeds maximum power dissipation when operating.
Please consider installing protection circuit for your
circuit to improve the safety, in case of abnormal
voltage application and so on.
Thermistors’ performance of temperature detection
would be deteriorated if self-heating occurs,
even when you use it under the maximum power
dissipation.
Please consider the maximum power dissipation and
dissipation factor.
Safety Precautions
Multilayer NTC Thermistors (hereafter referred to as “Thermistors”) should be used for general purpose applications
found in consumer electronics (audio/visual, home, office, information & communication) equipment.
When subjected to severe electrical, environmental, and/or mechanical stress beyond the specifications, as
noted in the Ratings and Specified Conditions section, the Thermistors’ performance may be degraded, or become
failure mode, such as short circuit mode and open-circuit mode. If you use under the condition of short-circuit, heat
generation of thermistors will occur by running large current due to application of voltage. There are possibilities of
smoke emission, substrate burn-out, and, in the worst case, fire.
For products which require higher safety levels, please carefully consider how a single malfunction can affect your
product. In order to ensure the safety in the case of a single malfunction, please design products with fail-safe,
such as setting up protecting circuits, etc.
For the following applications and conditions, please contact us for product of special specification not found in
this document.
· When your application may have difficulty complying with the safety or handling precautions specified below.
· High-quality and high-reliability required devices that have possibility of causing hazardous conditions, such as
death or injury (regardless of directly or indirectly), due to failure or malfunction of the product.
1 Aircraft and Aerospace Equipment (artificial satellite, rocket, etc.)
2 Submarine Equipment (submarine repeating equipment, etc.)
3 Transportation Equipment (motor vehicles, airplanes, trains, ship, traffic signal controllers, etc.)
4
Power Generation Control Equipment (atomic power, hydroelectric power, thermal power plant control system, etc.)
5 Medical Equipment (life-support equipment, pacemakers, dialysis controllers, etc.)
6 Information Processing Equipment (large scale computer systems, etc.)
7 Electric Heating Appliances, Combustion devices (gas fan heaters, oil fan heaters, etc.)
8 Rotary Motion Equipment
9 Security Systems
J And any similar types of equipment
[Maximum power dissipation]
· The Maximum power that can be continuously
applied under static air at a certain ambient
temperature. The Maximum power dissipation under
an ambient temperature of 25 °C or less is the same
with the rated maximum power dissipation, and
Maximum power dissipation beyond 25 °C depends
on the Decreased power dissipation curve below.
[Dissipation factor]
· The constant amount power required to raise the
temperature of the Thermistor 1 °C through self
heat generation under stable temperatures.
Dissipation factor (mW/°C) = Power consumption
of Thermistor / Temperature rise of element
Decreased power dissipation curve
Operating Conditions and Circuit Design
May. 201503
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.
Should a safety concern arise regarding this product, please be sure to contact us immediately.
Multilayer NTC Thermistors
ab
c
Land
SMD
Solder resist
(a) Excessive amount (b) Proper amount (c) Insufficient amount
Solder resist
Land
Portion to be
excessively soldered
A lead wire of
Retro-fitted
component
Soldering
iron
Solder
(Ground solder)
Chassis
Electrode pattern
Solder resist
Solder resist
Solder resist
The lead wire of a
component with lead wires
1.3 Environmental Restrictions
The Thermistors shall not be operated and/or
stored under the following conditions.
(1) Environmental conditions
(a) Under direct exposure to water or salt water
(b) Under conditions where water can condense
and/or dew can form
(c) Under conditions containing corrosive gases
such as hydrogen sulfide, sulfurous acid,
chlorine and ammonia
(2) Mechanical conditions
The place where vibration or impact that
exceeds specified conditions written in delivery
specification is loaded.
1.4 Measurement of Resistance
The resistance of the Thermistors varies depending
on ambient temperatures and self-heating. To
measure the resistance value when examining circuit
configuration and conducting receiving inspection
and so on, the following points should be taken into
consideration:
1 Measurement temp : 25±0.1 °C
Measurement in liquid (silicon oil, etc.) is
recommended for a stable measurement temperature.
2 Power : 0.10 mW max.
4 terminal measurement with a constant-current
power supply is recommended.
2. Design of Printed Circuit Board
2.1 Selection of Printed Circuit Boards
There is a possibility of performance deterioration
by heat shock (temperature cycles), which causes
cracks, from alumina substrate.
Please confirm that the substrate you use does
not deteriorate the Thermistors’ quality.
2.2 Design of Land Pattern
(1) Recommended land dimensions are shown below.
Use the proper amount of solder in order
to prevent cracking. Using too much solder
places excessive stress on the Thermistors.
Unit (mm)
Size Code
(EIA)
Component
dimensions
abc
LWT
Z(0201) 0.6 0.3 0.3 0.2 to 0.3
0.25 to 0.30
0.2 to 0.3
0(0402) 1.0 0.5 0.5 0.4 to 0.5
0.4 to 0.5
0.4 to 0.5
1(0603) 1.6 0.8 0.8 0.8 to 1.0
0.6 to 0.8
0.6 to 0.8
Recommended Land Dimensions
(2) The land size shall be designed to have equal
space, on both right and left sides. If the
amount of solder on both sides is not equal,
the component may be cracked by stress,
since the side with a larger amount of solder
solidifies later during cooling.
Recommended Amount of Solder
2.3 Utilization of Solder Resist
(1) Solder resist shall be utilized to equalize the
amounts of solder on both sides.
(2) Solder resist shall be used to divide the
pattern for the following cases;
· Components are arranged closely.
· The Thermistor is mounted near a component
with lead wires.
· The Thermistor is placed near a chassis.
Refer to the table below.
Prohibited Applications and Recommended Applications
Item
Prohibited
applications
Improved applications
by pattern division
Mixed mounting
with a component
with lead wires
Arrangement
near chassis
Retro-fi tting of
component with
lead wires
Lateral
arrangement
2.4 Component Layout
To prevent the crack of Thermistors, try to
place it on the position that could not easily
be affected by the bending stress of substrate
while mounting procedures or procedures
afterwards.
Placement of the Thermistors near heating
elements also requires the great care to be
taken in order to avoid stresses from rapid
heating and cooling.
May. 201503
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use.
Should a safety concern arise regarding this product, please be sure to contact us immediately.
Multilayer NTC Thermistors
A
B
C
E
D
Slit
Magnitude of stress A>B=C>D>E
Perforation
Supporting
pin
Supporting
pin
Crack
Separation of Solder
Crack
(1) To minimize mechanical stress caused by the
warp or bending of a PC board, please follow
the recommended Thermistors’ layout below.
(2) The following layout is for your reference since
mechanical stress near the dividing/breaking
position of a PC board varies depending on
the mounting position of the Thermistors.
(3) The magnitude of mechanical stress applied to
the Thermistors when dividing the circuit board
in descending order is as follows:
push back < slit < V-groove < perforation.
Also take into account the layout of the
Thermistors and the dividing/breaking method.
(4) When the Thermistors are placed near heating
elements such as heater, etc., cracks from thermal
stresses may occur under following situation:
· Soldering the Thermistors directly to heating
elements.
· Sharing the land with heating elements.
If planning to conduct above-mentioned mounting
and/or placement, please contact us in advance.
2.5 Mounting Density and Spaces
Intervals between components should not be too
narrow to prevent the influence from solder bridges
and solder balls. The space between components
should be carefully determined.
1. Storage
(1) The Thermistors shall be stored between 5 to
40 °C and 20 to 70 % RH, not under severe
conditions of high temperature and humidity.
(2) If stored in a place where humidity, dust, or
corrosive gasses (hydrogen sulfide, sulfurous
acid, hydrogen chloride and ammonia, etc.) are
contained, the solderability of terminal electrodes
will be deteriorated.
In addition, storage in a places where the heat
or direct sunlight exposure occur will cause
mounting problems due to deformation of tapes
and reels and components and taping/reels
sticking together.
(3) Do not store components longer than 6
months. Check the solderability of products
that have been stored for more than 6 months
before use
2. Chip Mounting Consideration
(1) When mounting the Thermistors/components
on a PC board, the Thermistor bodies shall
be free from excessive impact loads such
as mechanical impact or stress due to the
positioning, pushing force and displacement of
vacuum nozzles during mounting.
(2) Maintenance and inspection of the Chip
Mounter must be performed regularly.
(3) If the bottom dead center of the vacuum
nozzle is too low, the Thermistor will crack from
excessive force during mounting.
The following precautions and recommendations
are for your reference in use.
(a)
Set and adjust the bottom dead center of the
vacuum nozzles to the upper surface of the PC
board after correcting the warp of the PC board.
(b) Set the pushing force of the vacuum nozzle
during mounting to 1 to 3 N in static load.
(c) For double surface mounting, apply a
supporting pin on the rear surface of the PC
board to suppress the bending of the PC
board in order to minimize the impact of the
vacuum nozzles. Typical examples are shown
in the table below.
Item Prohibited mounting
Recommended mounting
Single surface
mouting
The supporting pin does not necessarily
have to be positioned beneath the
Thermistor.
Double surface
mounting
(d) Adjust the vacuum nozzles so that their bottom
dead center during mounting is not too low.
(4) The closing dimensions of the positioning
chucks shall be controlled. Maintenance
and replacement of positioning chucks shall
be performed regularly to prevent chipping
or cracking of the Thermistors caused by
mechanical impact during positioning due to
worn positioning chucks.
(5) Maximum stroke of the nozzle shall be
adjusted so that the maximum bending of PC
board does not exceed 0.5 mm at 90 mm
span. The PC board shall be supported by an
adequate number of supporting pins.
3. Selection of Soldering Flux
Soldering flux may seriously affect the performance
of the Thermistors. The following shall be confirmed
before use.
(1)
The soldering flux should have a halogen based
content of 0.1 wt% (converted to chlorine) or below.
Do not use soldering flux with strong acid.
(2) When applying water-soluble soldering flux,
wash the Thermistors sufficiently because
the soldering flux residue on the surface of
PC boards may deteriorate the insulation
resistance on the Thermistors’ surface.
Prohibited layout Recommended layout
Layout the Thermistors sideways
against the stressing direction
Precautions for Assembly
May. 201503

ERT-J1VG103JA

Mfr. #:
Manufacturer:
Panasonic
Description:
Thermistors - NTC 10KOhms 5% THERMISTOR NTC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union