ADG4612/ADG4613
Rev. 0 | Page 10 of 24
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
TOP VIEW
(Not to Scale)
1
2
3
4
5
6
7
8
ADG4612/
ADG4613
NC = NO CONNECT
16
15
14
13
12
11
10
9
D1
S1
V
SS
D4
S4
GND
IN1
D2
S2
V
DD
D3
IN4 IN3
S3
NC
IN2
09005-002
Figure 2. TSSOP Pin Configuration
PIN 1
INDICATOR
NOTES
1. EXPOSED PAD TIED TO SUBSTRATE, GND.
2. NC = NO CONNECT.
1S1
2V
SS
3GND
4S4
11 V
DD
12 S2
10 NC
9S3
5
D4
6
IN4
7
IN
3
8
D3
15
IN1
16
D1
14
IN2
13
D2
TOP VIEW
(Not to Scale)
ADG4612/
ADG4613
09005-003
Figure 3. LFCSP Pin Configuration
Table 8. Pin Function Descriptions
Pin No.
TSSOP LFCSP
Mnemonic Description
1 15 IN1 Logic Control Input 1. This pin has an internal 400 kΩ pull-down resistor to GND.
2 16 D1 Drain Terminal 1. Can be an input or output.
3 1 S1 Source Terminal 1. Can be an input or output.
4 2 V
SS
Most Negative Power Supply Potential.
5 3 GND Ground (0 V) Reference.
6 4 S4 Source Terminal 4. Can be an input or output.
7 5 D4 Drain Terminal 4. Can be an input or output.
8 6 IN4 Logic Control Input 4. This pin has an internal 400 kΩ pull-down resistor to GND.
9 7 IN3 Logic Control Input 3. This pin has an internal 400 kΩ pull-down resistor to GND.
10 8 D3 Drain Terminal 3. Can be an input or output.
11 9 S3 Source Terminal 3. Can be an input or output.
12 10 NC No Connection.
13 11 V
DD
Most Positive Power Supply Potential.
14 12 S2 Source Terminal 2. Can be an input or output.
15 13 D2 Drain Terminal 2. Can be an input or output.
16 14 IN2 Logic Control Input 2. This pin has an internal 400 kΩ pull-down resistor to GND.
N/A 0 EPAD
The exposed pad is connected to the substrate GND. For best heat dissipation, it is
recommended that this pad be connected to GND. If heat dissipation is not a concern,
it is possible to leave the pad floating. Connecting the exposed pad to V
SS
(if V
SS
is not
equal to GND) can cause current to flow and can damage the part.
Table 9. ADG4612 Truth Table
ADG4612 INx Switch Condition
1 On
0 Off
Table 10. ADG4613 Truth Table
ADG4613 INx S1, S4 S2, S3
0 Off On
1 On Off
ADG4612/ADG4613
Rev. 0 | Page 11 of 24
TYPICAL PERFORMANCE CHARACTERISTICS
0
1
2
3
4
5
6
7
8
9
–6 –4 –2 0 2 4 6
ON RESISTANCE ()
V
S
OR V
D
VOLTAGE (V)
V
DD
= +3V
V
SS
= –3V
V
DD
= +4.5V
V
SS
= –4.5V
V
DD
= +5V
V
SS
= –5V
V
DD
= +5.5V
V
SS
= –5.5V
09005-004
T
A
= 25°C
Figure 4. On Resistance as a Function of V
S
, V
D
(Dual Supply)
0
2
4
6
8
10
12
14
6420246810121416
ON RESISTANCE ()
V
S
OR V
D
VOLTAGE (V)
V
DD
= 10.8V
V
SS
= 0V
V
DD
= 12V
V
SS
= 0V
V
DD
= 13.2V
V
SS
= 0V
V
DD
= 16V
V
SS
= 0V
V
DD
= 4.5V
V
SS
= 0V
V
DD
= 5V
V
SS
= 0V
V
DD
= 5.5V
V
SS
= 0V
09005-005
T
A
= 25°C
Figure 5. On Resistance as a Function of V
S
, V
D
(Single Supply)
0
1
2
3
4
5
6
7
–6 –4 –2 0 2 4
ON RESISTANCE ()
V
S
OR V
D
VOLTAGE (V)
09005-006
V
DD
= +5V
V
SS
= –5V
T
A
= +105°C
T
A
= +85°C
T
A
= –40°C
T
A
= +25°C
Figure 6. On Resistance as a Function of V
S
, V
D
for Different Temperatures,
5 V Dual Supply
09005-007
0
2
4
6
8
10
12
–6 –5 –4 3 –2 –1 0 1 2 3
ON RESISTANCE ()
V
DD
= +3V
V
SS
= –3V
V
S
OR V
D
VOLTAGE (V)
T
A
= +105°C
T
A
= +85°C
T
A
= –40°C
T
A
= +25°C
Figure 7. On Resistance as a Function of V
S
, V
D
for Different Temperatures,
3 V Dual Supply
09005-008
0
1
2
3
4
5
6
–4 –2 0 2 4 6 8 10 12
ON RESISTANCE ()
V
DD
= +12V
V
SS
= 0V
V
S
OR V
D
VOLTAGE (V)
T
A
= +105°C
T
A
= +85°C
T
A
= –40°C
T
A
= +25°C
Figure 8. On Resistance as a Function of V
S
, V
D
for Different Temperatures,
12 V Single Supply
0
2
4
6
8
10
12
14
–6 –4 –2 0 2 4
ON RESISTANCE ()
V
S
OR V
D
VOLTAGE (V)
09005-009
V
DD
= +5V
V
SS
= 0V
T
A
= +105°C
T
A
= +85°C
T
A
= –40°C
T
A
= +25°C
Figure 9. On Resistance as a Function of V
S
, V
D
for Different Temperatures,
5 V Single Supply
ADG4612/ADG4613
Rev. 0 | Page 12 of 24
0 20406080100
LEAKAGE CURRENT (nA)
TEMPERATURE (°C)
100
0
–100
–300
–200
–500
–400
–600
–700
V
DD
= +5V
V
SS
= –5V
V
BIAS
= 1V/4.5V
I
D
, I
S
(ON) –, –
I
S
(OFF) , +
I
D
(OFF) +, –
I
D
, (OFF) , +
I
S
(OFF) +, –
I
D
, I
S
(ON) +, +
09005-010
Figure 10. Leakage Currents as a Function of Temperature, 5 V Dual Supply
0 20406080100
LEAKAGE CURRENT (nA)
TEMPERATURE (°C)
100
0
–100
–300
–200
–500
–400
V
DD
= +3V
V
SS
= –3V
V
BIAS
= 1V/2V
I
D
, I
S
(ON) –, –
I
S
(OFF) , +
I
D
(OFF) +, –
I
D
, (OFF) , +
I
S
(OFF) +, –
I
D
, I
S
(ON) +, +
09005-011
Figure 11. Leakage Currents as a Function of Temperature, 3 V Dual Supply
0 20406080100
LEAKAGE CURRENT (nA)
TEMPERATURE (°C)
200
300
100
–100
0
–300
–200
–400
V
DD
= 12V
V
SS
= 0V
V
BIAS
= 1V/10V
I
D
, I
S
(ON) –
I
S
(OFF) +
I
D
(OFF) +–
I
D
, (OFF) +
I
S
(OFF) +–
I
D
, I
S
(ON) ++
09005-112
Figure 12. Leakage Currents as a Function of Temperature,
12 V Single Supply
0 20406080100
LEAKAGE CURRENT (nA)
TEMPERATURE (°C)
800
600
400
0
200
–400
–200
–600
–1000
–800
V
DD
= +5V
V
SS
= 0V
V
BIAS
= 1V/4.5V
I
D
, I
S
(ON) , –
I
S
(OFF) , +
I
D
(OFF) +, –
I
D
, (OFF) , +
I
S
(OFF) +, –
I
D
, I
S
(ON) +, +
09005-013
Figure 13. Leakage Currents as a Function of Temperature, 5 V Single Supply
0
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018
0.0020
024681012
I
DD
(A)
LOGIC (V)
V
DD
= +12V, V
SS
= 0V
I
DD
PER LOGIC INPUT
T
A
= 25°C
V
DD
= +5V, V
SS
= –5V
V
DD
= +5V, V
SS
= 0V
V
DD
= +3V, V
SS
= 0V
09005-115
Figure 14. I
DD
vs. Logic Level
0
50
100
150
200
250
300
350
400
450
500
–5 –3 –1 1 3 5 7 9 11
CHARGE INJECTION (pC)
V
S
(V)
V
DD
= +5V
V
SS
= 0V
V
DD
= +5V
V
SS
= –5V
V
DD
= +12V
V
SS
= 0V
V
DD
= +12V
V
SS
= 0V
09005-012
T
A
= 25°C
Figure 15. Charge Injection vs. Source Voltage

ADG4612BCPZ-REEL7

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog Switch ICs Power Off Protect 5V/12V Quad SPST
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union