REV.
AD7665
–6–
PIN FUNCTION DESCRIPTION
Pin
No. Mnemonic Type Description
1 AGND P Analog Power Ground Pin.
2 AVDD P Input Analog Power Pin. Nominally 5 V.
3, 44–48 NC No Connect.
4 BYTESWAP Parallel Mode Selection (8/16 Bit). When LOW, the LSB is output on D[7:0] and the MSB is
output on D[15:8]. When HIGH, the LSB is output on D[15:8] and the MSB is output on D[7:0].
5OB/2C DI Straight Binary/Binary Twos Complement. When OB/2C is HIGH, the digital output is straight
binary; when LOW, the MSB is inverted, resulting in a twos complement output from its internal
shift register.
6 WARP DI Mode Selection. When HIGH and IMPULSE LOW, this input selects the fastest mode, the
maximum throughput is achievable, and a minimum conversion rate must be applied in order
to guarantee full specified accuracy. When LOW, full accuracy is maintained independent of
the minimum conversion rate.
7 IMPULSE DI Mode Selection. When HIGH and WARP LOW, this input selects a reduced Power Mode.
In this mode, the power dissipation is approximately proportional to the sampling rate.
8 SER/PAR DI Serial/Parallel Selection Input. When LOW, the Parallel Port is selected; when HIGH, the
Serial Interface Mode is selected and some bits of the data bus are used as a Serial Port.
9, 10 D[0:1] DO Bit 0 and Bit 1 of the Parallel Port Data Output Bus. When SER/PAR is HIGH, these outputs
are in high impedance.
11, 12 D[2:3] or DI/O When SER/PAR is LOW, these outputs are used as Bit 2 and Bit 3 of the Parallel Port Data
Output Bus.
DIVSCLK[0:1] When SER/PAR is HIGH, EXT/INT is LOW and RDC/SDIN is LOW, which is the Serial
Master Read after Convert Mode. These inputs, part of the Serial Port, are used to slow down,
if desired, the internal serial clock that clocks the data output. In the other serial modes, these
pins are high impedance outputs.
13 D[4] DI/O When SER/PAR is LOW, this output is used as Bit 4 of the Parallel Port Data Output Bus.
or EXT/INT When SER/PAR is HIGH, this input, part of the Serial Port, is used as a digital select input for
choosing the internal or an external data clock, called respectively, Master and Slave Modes.
With EXT/INT tied LOW, the internal clock is selected on SCLK output. With EXT/INT set to a
logic HIGH, output data is synchronized to an external clock signal connected to the SCLK
input and the external clock is gated by CS.
14 D[5] DI/O When SER/PAR is LOW, this output is used as Bit 5 of the Parallel Port Data Output Bus.
or INVSYNC When SER/PAR is HIGH, this input, part of the Serial Port, is used to select the active state
of the SYNC signal. When LOW, SYNC is active HIGH. When HIGH, SYNC is active LOW.
15 D[6] DI/O When SER/PAR is LOW, this output is used as Bit 6 of the Parallel Port Data Output Bus.
or INVSCLK When SER/PAR is HIGH, this input, part of the Serial Port, is used to invert the SCLK signal.
It is active in both master and slave mode.
16 D[7] DI/O When SER/PAR is LOW, this output is used as Bit 7 of the Parallel Port Data Output Bus.
or RDC/SDIN When SER/PAR is HIGH, this input, part of the Serial Port, is used as either an external data
input or a read mode selection input, depending on the state of EXT/INT.
When EXT/INT is HIGH, RDC/SDIN could be used as a data input to daisy-chain the conversion
results from two or more ADCs onto a single SDOUT line. The digital data level on SDIN is
output on DATA with a delay of 16 SCLK periods after the initiation of the read sequence.
When EXT/INT is LOW, RDC/SDIN is used to select the Read Mode. When RDC/SDIN is
HIGH, the previous data is output on SDOUT during conversion. When RDC/SDIN is LOW,
the data can be output on SDOUT only when the conversion is complete.
17 OGND P Input/Output Interface Digital Power Ground.
18 OVDD P Input/Output Interface Digital Power. Nominally at the same supply as the supply of the host
interface (5 V or 3 V).
19 DVDD P Digital Power. Nominally at 5 V.
20 DGND P Digital Power Ground.
C
REV.
AD7665
–7–
PIN FUNCTION DESCRIPTION (continued)
Pin
No. Mnemonic Type Description
21 D[8] DO When SER/PAR is LOW, this output is used as Bit 8 of the Parallel Port Data Output Bus.
or SDOUT When SER/PAR is HIGH, this output, part of the Serial Port, is used as a serial data output
synchronized to SCLK. Conversion results are stored in an on-chip register. The AD7665
provides the conversion result, MSB first, from its internal shift register. The data format is
determined by the logic level of OB/2C. In Serial Mode, when EXT/INT is LOW, SDOUT is
valid on both edges of SCLK.
In serial mode, when EXT/INT is HIGH:
If INVSCLK is LOW, SDOUT is updated on the SCLK rising edge and valid on the next
falling edge.
If INVSCLK is HIGH, SDOUT is updated on the SCLK falling edge and valid on the next
rising edge.
22 D[9] DI/O When SER/PAR is LOW, this output is used as Bit 9 of the Parallel Port Data Output Bus.
or SCLK When SER/PAR is HIGH, this pin, part of the Serial Port, is used as a serial data clock input
or output, dependent upon the logic state of the EXT/INT pin. The active edge where the data
SDOUT is updated depends upon the logic state of the INVSCLK pin.
23 D[10] DO When SER/PAR is LOW, this output is used as Bit 10 of the Parallel Port Data Output Bus.
or SYNC When SER/PAR is HIGH, this output, part of the Serial Port, is used as a digital output frame
synchronization for use with the internal data clock (EXT/INT = Logic LOW). When a read
sequence is initiated and INVSYNC is LOW, SYNC is driven HIGH and remains HIGH
while SDOUT output is valid. When a read sequence is initiated and INVSYNC is HIGH,
SYNC is driven LOW and remains LOW while SDOUT output is valid.
24 D[11] DO When SER/PAR is LOW, this output is used as Bit 11 of the Parallel Port Data Output Bus.
or RDERROR When SER/PAR is HIGH and EXT/INT is HIGH, this output, part of the Serial Port, is used as
an incomplete read error flag. In Slave Mode, when a data read is started and not complete when
the following conversion is complete, the current data is lost and RDERROR is pulsed HIGH.
25–28 D[12:15] DO Bit 12 to Bit 15 of the Parallel Port Data Output Bus. When SER/PAR is HIGH, these outputs
are in high impedance.
29 BUSY DO Busy Output. Transitions HIGH when a conversion is started and remains HIGH until the
conversion is complete and the data is latched into the on-chip shift register. The falling edge
of BUSY could be used as a data-ready clock signal.
30 DGND P Must Be Tied to Digital Ground.
31 RD DI Read Data. When CS and RD are both LOW, the Interface Parallel or Serial Output Bus is enabled.
32 CS DI Chip Select. When CS and RD are both LOW, the Interface Parallel or Serial Output Bus is
enabled. CS is also used to gate the external serial clock.
33 RESET DI Reset Input. When set to a logic HIGH, reset the AD7665. Current conversion, if any, is aborted.
If not used, this pin could be tied to DGND.
34 PD DI Power-Down Input. When set to a logic HIGH, power consumption is reduced and conversions
are inhibited after the current one is completed.
35 CNVST DI Start Conversion. A falling edge on CNVST puts the internal sample-and-hold into the hold state
and initiates a conversion. In Impulse Mode (IMPULSE HIGH and WARP LOW), if CNVST
is held LOW when the acquisition phase (t
8
) is complete, the internal sample-and-hold is put
into the hold state and a conversion is immediately started.
36 AGND P Must Be Tied to Analog Ground.
37 REF AI Reference Input Voltage.
38 REFGND AI Reference Input Analog Ground.
39 INGND AI Analog Input Ground.
40, 41, INA, INB, AI Analog Inputs. Refer to Table I for input range configuration.
42, 43 INC, IND
NOTES
AI = Analog Input
DI = Digital Input
DI/O = Bidirectional Digital
DO = Digital Output
P = Power
C
REV.
AD7665
–8–
DEFINITION OF SPECIFICATIONS
Internal Nonlinearity Error (INL)
Linearity error refers to the deviation of each individual code
from a line drawn from “negative full scale” through “positive
full scale.” The point used as negative full scale occurs 1/2 LSB
before the first code transition. Positive full scale is defined as a
level 1 1/2 LSB beyond the last code transition. The deviation is
measured from the middle of each code to the true straight line.
Differential Nonlinearity Error (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It is
often specified in terms of resolution for which no missing codes
are guaranteed.
Full-Scale Error
The last transition (from 011 . . . 10 to 011 ...11 in twos
complement coding) should occur for an analog voltage 1 1/2 LSB
below the nominal full scale (2.499886 V for the ±2.5 V range).
The full-scale error is the deviation of the actual level of the last
transition from the ideal level.
Bipolar Zero Error
The difference between the ideal midscale input voltage (0 V) and
the actual voltage producing the midscale output code.
Unipolar Zero Error
In Unipolar Mode, the first transition should occur at a level
1/2 LSB above analog ground. The unipolar zero error is the
deviation of the actual transition from that point.
Spurious-Free Dynamic Range (SFDR)
The difference, in decibels (dB), between the rms amplitude of
the input signal and the peak spurious signal.
Effective Number of Bits (ENOB)
A measurement of the resolution with a sine wave input. It is
related to S/(N+D) by the following formula:
ENOB S N D
dB
=+
[]
-
)
()
176 602..
and is expressed in bits.
Total Harmonic Distortion (THD)
The rms sum of the first five harmonic components to the rms
value of a full-scale input signal, expressed in decibels.
Signal-To-Noise Ratio (SNR)
The ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Signal To (Noise + Distortion) Ratio (S/[N+D])
The ratio of the rms value of the actual input signal to the rms sum
of all other spectral components below the Nyquist frequency,
including harmonics but excluding dc. The value for S/(N+D) is
expressed in decibels.
Aperture Delay
A measure of the acquisition performance measured from the
falling edge of the CNVST input to when the input signal is
held for a conversion.
Transient Response
The time required for the AD7665 to achieve its rated accuracy
after a full-scale step function is applied to its input.
C

AD7665ASTZRL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 16B 570kSPS Bipolar
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet