Data Sheet AD7923
Rev. D | Page 21 of 24
C
S
SCLK
DOUT
DIN
t
5
t
11
t
8
t
QUIET
t
CONVER
T
1 2
3 4 5 6 1
1
12
13
1
4 1
5 1
6
THREE-
STATE
ZERO
ADD1 ADD0
DB11
DB10 DB4
DB3 DB2
DB1 DB0
THREE-
STATE
2 IDENTIFICATION
BITS
ZERO
B
WRITE SEQ1 DONTC
DONTC
ADD1 ADD0 CODING DONTC DONTC DONTC DONTC
t
9
t
2
t
3
t
10
t
6
t
7
t
4
03086-027
Figure 27. Serial Interface Timing Diagram
CS
1 16 1 16 1 16
SCLK
VALID DATA
VALID DATA
DOUT
POWER-UP
DIN
t
CYCLE
5µs MIN
t
QUIET
MIN
03086-028
Figure 28. General Timing Diagram
MICROPROCESSOR INTERFACING
The serial interface on the AD7923 allows the part to be directly
connected to a range of many different microprocessors. This
section explains how to interface the AD7923 with some of the
more common microcontroller and DSP serial interface protocols.
AD7923-to-TMS320C541
The serial interface on the TMS320C541 uses a continuous
serial clock and frame synchronization signals to synchronize
the data transfer operations with peripheral devices like the
AD7923. The
CS
input allows easy interfacing between the
TMS320C541 and the AD7923 without any glue logic required.
The serial port of the TMS320C541 is set up to operate in burst
mode with internal CLKX0 (Tx serial clock on Serial Port 0)
and FSX0 (Tx frame sync from Serial Port 0). The serial port
control register (SPC) must have the following setup: FO = 0,
FSM = 1, MCM = 1, and TXM = 1. The connection diagram is
shown in Figure 29. It should be noted that for signal processing
applications, it is imperative that the frame synchronization
signal from the TMS320C541 provides equidistant sampling.
The V
DRIVE
pin of the AD7923 takes the same supply voltage as
the TMS320C541. This allows the ADC to operate at a higher
voltage than the serial interface, that is, the TMS320C541, if
necessary.
TMS320C541
1
AD7923
1
CLKX
CLKR
DR
DT
FSX
FSR
V
DD
SCLK
DOUT
DIN
C
S
1
ADDITIONAL PINS REMOVED FOR CLARITY.
03086-029
V
DRIVE
Figure 29. Interfacing to the TMS320C541
AD7923-to-ADSP-21xx
The ADSP-21xx family of DSPs is interfaced directly to the
AD7923 without any glue logic required. The V
DRIVE
pin of the
AD7923 takes the same supply voltage as the ADSP-218x,
which allows the ADC to operate at a higher voltage than the
serial interface, that is, ADSP-218x, if necessary.
The SPORT0 control register should be set up as follows:
TFSW = RFSW = 1, alternate framing
INVRFS = INVTFS = 1, active low frame signal
DTYPE = 00, right justify data
SLEN = 1111, 16-bit data-words
ISCLK = 1, internal serial clock
TFSR = RFSR = 1, frame every word
IRFS = 0
ITFS = 1
AD7923 Data Sheet
Rev. D | Page 22 of 24
The connection diagram is shown in Figure 30. The ADSP-218x
has the TFS and RFS of the SPORT tied together, with TFS set
as an output and RFS set as an input. The DSP operates in
alternate framing mode and the SPORT control register is set
up as described. The frame synchronization signal generated on
the TFS is tied to
CS
and, as with all signal processing applica-
tions, equidistant sampling is necessary. However, in this
example, the timer interrupt is used to control the sampling rate
of the ADC, and under certain conditions equidistant sampling
might not be achieved.
V
DRIVE
AD7923
1
ADSP-218x
1
SCLK
DR
RFS
TFS
DT
SCLK
DOUT
CS
DIN
1
ADDITIONAL PINS REMOVED FOR CLARITY.
V
DD
03086-030
Figure 30. Interfacing to the ADSP-218x
The timer register, for instance, is loaded with a value that
provides an interrupt at the required sample interval. When an
interrupt is received, a value is transmitted with TFS/DT (ADC
control word). The TFS is used to control the RFS and therefore
the reading of data. The frequency of the serial clock is set in
the SCLKDIV register. When the instruction to transmit with
TFS is given (that is, AX0 = TX0), the state of the SCLK is
checked. The DSP waits until the SCLK has gone high, low, and
high before the transmission starts. If the timer and SCLK
values are chosen such that the instruction to transmit occurs
on or near the rising edge of SCLK, the data can be transmitted,
or it can wait until the next clock edge.
For example, if the ADSP-2189 has a 20 MHz crystal such that it
has a master clock frequency of 40 MHz, then the master cycle
time is 25 ns. If the SCLKDIV register is loaded with the value
3, then a SCLK of 5 MHz is obtained, and eight master clock
periods elapse for every SCLK period. Depending on the
throughput rate selected, if the timer registers are loaded with
the value 803, 100.5 SCLKs occur between interrupts and
subsequently between transmit instructions. This situation
results in nonequidistant sampling since the transmit
instruction occurs on a SCLK edge. If the number of SCLKs
between interrupts is an integer of N, equidistant sampling is
implemented by the DSP.
AD7923-to-DSP563xx
The connection diagram in Figure 31 shows how the AD7923
can be connected to the synchronous serial interface (ESSI) of
the DSP563xx family of DSPs from Motorola. Each ESSI (two
on board) is operated in synchronous mode (SYN bit in CRB =
1), with an internally generated word length frame sync for
both Tx and Rx (bits FSL1 = 0 and FSL0 = 0 in CRB). Normal
operation of the ESSI is selected by making MOD = 0 in the
CRB. Set the word length to 16 by setting bits WL1 = 1 and
WL0 = 0 in CRA. The FSP bit in the CRB should be set to 1 so
the frame sync is negative. It should be noted that for signal
processing applications, it is imperative that the frame synchro-
nization signal from the DSP563xx provides equidistant
sampling.
In the example shown in Figure 31, the serial clock is taken
from the ESSI, therefore the SCK0 pin must be set as an output,
SCKD = 1. The V
DRIVE
pin of the AD7923 takes the same supply
voltage as the DSP563xx, which allows the ADC to operate at a
higher voltage than the serial interface, that is, DSP563xx, if
necessary.
AD7923
1
DSP563xx
1
SCK
SRD
STD
SC2
SCLK
DOUT
CS
DIN
V
DRIVE
1
ADDITIONAL PINS REMOVED FOR CLARITY.
V
DD
03086-031
Figure 31. Interfacing to the DSP563xx
Data Sheet AD7923
Rev. D | Page 23 of 24
APPLICATION HINTS
GROUNDING AND LAYOUT
The AD7923 has very good immunity to noise on the power
supplies as can be seen by the PSRR vs. supply ripple frequency
plot, Figure 6. However, care should still be taken in grounding
and layout.
The printed circuit board that houses the AD7923 should be
designed such that the analog and digital sections are separated
and confined to certain areas of the board. This facilitates the
use of ground planes that can be separated easily. A minimum
etch technique is generally best for ground planes since it gives
the best shielding. All three AGND pins of the AD7923 should
be sunk into the AGND plane. Digital and analog ground
planes should be joined at only one place. If the AD7923 is in a
system where multiple devices require an AGND to DGND
connection, the connection should still be made at one point
only, a star ground point that should be established as close as
possible to the AD7923.
Avoid running digital lines under the device since they couple
noise onto the die. The analog ground plane should be allowed
to run under the AD7923 to avoid noise coupling. The power
supply lines to the AD7923 should use as large a trace as
possible to provide low impedance paths and reduce the effects
of glitches on the power supply line. Fast switching signals, like
clocks, should be shielded with digital ground to avoid radiating
noise to other sections of the board, and clock signals should
never be run near the analog inputs. Avoid crossover of digital
and analog signals. Traces on opposite sides of the board should
run at right angles to each other. This reduces the effects of
feedthrough through the board. A microstrip technique is by far
the best technique, but is not always possible with a double-
sided board. In this technique, the component side of the board
is dedicated to ground planes, while signals are placed on the
solder side.
Good decoupling is also important. All analog supplies should
be decoupled with 10 µF tantalum in parallel with 0.1 µF capa-
citors to AGND. To achieve the best results from these
decoupling components, they must be placed as close as pos-
sible to the device, ideally right up against the device. The 0.1
µF capacitors should have low effective series resistance (ESR)
and low effective series inductance (ESI), such as the common
ceramic types or surface mount types, which provide a low
impedance path to ground at high frequencies to handle
transient currents from internal logic switching.

AD7923BRUZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 4CH 200 kSPS 12-Bit W/ Sequencer
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union