19
INDUSTRIAL TEMPERATURE RANGE
IDT5T9890
EEPROM PROGRAMMABLE 2.5V PROGRAMMABLE SKEW PLL CLOCK DRIVER
AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
All outputs at the same interface level
Symbol Parameter Min. Typ. Max Unit
FNOM VCO Frequency Range see JTAG/I
2
C Serial Configurations: VCO Frequency Range table
tRPW Reference Clock Pulse Width HIGH or LOW 1 ns
tFPW Feedback Input Pulse Width HIGH or LOW 1 ns
tSK(B) Output Matched Pair Skew
(1,2,4)
——50ps
tSK(O) Output Skew (Rise-Rise, Fall-Fall, Nominal)
(1,3)
100 ps
tSK1(ω) Multiple Frequency Skew (Rise-Rise, Fall-Fall, Nominal-Divided, Divided-Divided)
(1,3,4)
100 ps
tSK2(ω) Multiple Frequency Skew (Rise-Fall, Nominal-Divided, Divided-Divided)
(1,3,4)
400 ps
tSK1(INV) Inverting Skew (Nominal-Inverted)
(1,3)
——400 ps
tSK2(INV) Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fall, Inverted-Divided)
(1,3,4)
400 ps
tSK(PR) Process Skew
(1,3.5)
——300 ps
t(φ) REF Input to FB Static Phase Offset
(6)
-100 100 ps
t
ODCV Output Duty Cycle Variation from 50%
(7)
HSTL / eHSTL / 1.8V LVTTL -375 375 ps
2.5V LVTTL -275 275
t
ORISE Output Rise Time
(8)
HSTL / eHSTL / 1.8V LVTTL 1.2 ns
2.5V LVTTL 1
t
OFALL Output Fall Time
(8)
HSTL / eHSTL / 1.8V LVTTL 1.2 ns
2.5V LVTTL 1
tL Power-up PLL Lock Time
(9)
—— 4ms
tL(ω) PLL Lock Time After Input Frequency Change
(9)
—— 1ms
tL(REFSEL1) PLL Lock Time After Change in REF_SEL
(9,11)
100 µs
tL(REFSEL2) PLL Lock Time After Change in REF_SEL (REF1 and REF0 are different frequency)
(9)
—— 1ms
tL(PD) PLL Lock Time After Asserting PD Pin
(9)
—— 1ms
tJIT(CC) Cycle-to-Cycle Output Jitter (peak-to-peak)
(10)
50 75 ps
tJIT(PER) Period Jitter (peak-to-peak)
(10)
——75 ps
tJIT(HP) Half Period Jitter (peak-to-peak, QFB/QFB only)
(10, 12)
125 ps
tJIT(DUTY) Duty Cycle Jitter (peak-to-peak)
(10)
——100 ps
V
OX HSTL and eHSTL Differential True and Complementary Output Crossing Voltage Level VDDQN/2 - 150 VDDQN/2 VDDQN/2 + 150 mV
QFB/QFB only
(12)
NOTES:
1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.
2. tSK(B) is the skew between a pair of outputs (nQ0 and nQ1) when all outputs are selected as the same class.
3. The measurement is made at VDDQN/2.
4. There are three classes of outputs: nominal (multiple of tU), inverted, and divided (divide-by-2 or divide-by-4 mode).
5. tSK(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQN, ambient temperature, air flow, etc.).
6. t(φ) is measured with REF and FB the same type of input, the same rise and fall times. For 1.8V / 2.5V LVTTL input and output, the measurement is taken from VTHI on REF
to VTHI on FB. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to 0tU, FB input
divider set to divide-by-one, and Bit 60 = 1.
7. tODCV is measured with all outputs selected for 0tU.
8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.
9. tL, tL(ω), tL(REFSEL1), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDQN is stable and
within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted until t(φ) is within specified
limits.
10. The jitter parameters are measured with all outputs selected for 0tU, FB input divider is set to divide-by-one, and Bit 60 = 1.
11. Both REF inputs must be the same frequency, but up to ±180° out of phase.
12. For HSTL/eHSTL outputs only.
20
INDUSTRIAL TEMPERATURE RANGE
IDT5T9890
EEPROM PROGRAMMABLE 2.5V PROGRAMMABLE SKEW PLL CLOCK DRIVER
AC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
All outputs at the different interface levels
Symbol Parameter Min. Typ. Max Unit
FNOM VCO Frequency Range see JTAG/I
2
C Serial Configurations: VCO Frequency Range table
tRPW Reference Clock Pulse Width HIGH or LOW 1 ns
tFPW Feedback Input Pulse Width HIGH or LOW 1 ns
tSK(B) Output Matched Pair Skew
(1,2,4)
200 ps
tSK(O) Output Skew (Rise-Rise, Fall-Fall, Nominal)
(1,3)
250 ps
tSK1(ω) Multiple Frequency Skew (Rise-Rise, Fall-Fall, Nominal-Divided, Divided-Divided)
(1,3,4)
500 ps
tSK2(ω) Multiple Frequency Skew (Rise-Fall, Nominal-Divided, Divided-Divided)
(1,3,4)
500 ps
tSK1(INV) Inverting Skew (Nominal-Inverted)
(1,3)
——500 ps
tSK2(INV) Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fall, Inverted-Divided)
(1,3,4)
500 ps
tSK(PR) Process Skew
(1,3.5)
——400 ps
t(φ) REF Input to FB Static Phase Offset
(6)
-200 200 ps
t
ODCV Output Duty Cycle Variation from 50%
(7)
HSTL / eHSTL / 1.8V LVTTL -475 475 ps
2.5V LVTTL -375 375
t
ORISE Output Rise Time
(8)
HSTL / eHSTL / 1.8V LVTTL 1.2 ns
2.5V LVTTL 1
t
OFALL Output Fall Time
(8)
HSTL / eHSTL / 1.8V LVTTL 1.2 ns
2.5V LVTTL 1
tL Power-up PLL Lock Time
(9)
—— 4ms
tL(ω) PLL Lock Time After Input Frequency Change
(9)
—— 1ms
tL(REFSEL1) PLL Lock Time After Change in REF_SEL
(9,11)
100 µs
tL(REFSEL2) PLL Lock Time After Change in REF_SEL (REF1 and REF0 are different frequency)
(9)
—— 1ms
tL(PD) PLL Lock Time After Asserting PD Pin
(9)
—— 1ms
tJIT(CC) Cycle-to-Cycle Output Jitter (peak-to-peak)
(10)
100 ps
tJIT(PER) Period Jitter (peak-to-peak)
(10)
——150 ps
tJIT(HP) Half Period Jitter (peak-to-peak, QFB/QFB only)
(10, 12)
200 ps
tJIT(DUTY) Duty Cycle Jitter (peak-to-peak)
(10)
——150 ps
V
OX HSTL and eHSTL Differential True and Complementary Output Crossing Voltage Level VDDQN/2 - 150 VDDQN/2 VDDQN/2 + 150 mV
QFB/QFB only
(12)
NOTES:
1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.
2. tSK(B) is the skew between a pair of outputs (nQ0 and nQ1) when all outputs are selected as the same class.
3. The measurement is made at VDDQN/2.
4. There are three classes of outputs: nominal (multiple of tU), inverted, and divided (divide-by-2 or divide-by-4 mode).
5. tSK(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQN, ambient temperature, air flow, etc.).
6. t(φ) is measured with REF and FB the same type of input, the same rise and fall times. For 1.8V / 2.5V LVTTL input and output, the measurement is taken from VTHI on REF
to VTHI on FB. For HSTL / eHSTL input and output, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to 0tU, FB input
divider set to divide-by-one, and Bit 60 = 1.
7. tODCV is measured with all outputs selected for 0tU.
8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.
9. tL, tL(ω), tL(REFSEL1), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/VDDQN is stable and
within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted until t(φ) is within specified
limits.
10. The jitter parameters are measured with all outputs selected for 0tU, FB input divider is set to divide-by-one, and Bit 60 = 1.
11. Both REF inputs must be the same frequency, but up to ±180° out of phase.
12. For HSTL/eHSTL outputs only.
21
INDUSTRIAL TEMPERATURE RANGE
IDT5T9890
EEPROM PROGRAMMABLE 2.5V PROGRAMMABLE SKEW PLL CLOCK DRIVER
AC DIFFERENTIAL INPUT SPECIFICATIONS
(1)
Symbol Parameter Min. Typ. Max Unit
t
W Reference/Feedback Input Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs)
(2)
1—ns
Reference/Feedback Input Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs)
(2)
1—
HSTL/eHSTL/1.8V LVTTL/2.5V LVTTL
VDIF AC Differential Voltage
(3)
400 mV
VIH AC Input HIGH
(4,5)
Vx + 200 mV
VIL AC Input LOW
(4,6)
Vx - 200 mV
LVEPECL
VDIF AC Differential Voltage
(3)
400 mV
VIH AC Input HIGH
(4)
1275 mV
VIL AC Input LOW
(4)
875 mV
NOTES:
1. For differential input mode, Bits 35 - 30 = 1.
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined
by VDIF has been met or exceeded.
3. Differential mode only. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level.
The AC differential voltage must be achieved to guarantee switching to a new state.
4. For single-ended operation, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. Refer to each input interface's DC specification for the correct VREF[1:0] range.
5. Voltage required to switch to a logic HIGH, single-ended operation only.
6. Voltage required to switch to a logic LOW, single-ended operation only.

IDT5T9890NLGI

Mfr. #:
Manufacturer:
Description:
IC CLK DRIVER 2.5V PLL 68-VFQFPN
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet