Philips Semiconductors Product data sheet
SC28L194Quad UART for 3.3 V and 5 V supply voltage
2006 Aug 15
13
communication between the transmitter and receiver is entirely
within the UART - it is essentially “talking to itself”.
The remote loop back mode (also used for diagnostic purposes) is
similar to auto echo except that the characters are not sent to the
local CPU, nor is the receiver status updated. The received data is
sent directly to the transmitter where it is sent out on the TxD output.
The received data is not sent to the receive FIFO and hence the
host will not normally be participating in any diagnostics.
Minor Modes
The minor modes provide additional features within the major
modes. In general the minor modes provide a reduction in the
control burden and a less stringent interrupt latency time for the host
processor. These modes could be invoked in all of the major
modes.. However it may not be reasonable in many situations.
Watch-dog Timer Time-out Mode
Each receiver in the Quad UART is equipped with a watch-dog timer
that is enabled by the “Watch-dog Timer Enable Register (WTER).
The watch-dog “barks” (times out) if 64 counts of the receiver clock
(64 bit times) elapse with no RxFIFO activity. RxFIFO events are a
read of the RxFIFO or GRxFIFO, or the push of a received character
into the RxFIFO. The timer resets when the (G)RxFIFO is read or if
another character is pushed into the RxFIFO. The receiver
watch-dog timer is included to allow detection of the very last
character(s) of a received message that may be waiting in the
RxFIFO, but are too few in number to successfully initiate an
interrupt. The watch-dog timer is enabled for counting if the
channel’s bit in the Watch Dog Timer Control Register (WDTCR) is
set. Note: a read of the GRxFIFO will reset the watch-dog timer of
only the channel specified in the current interrupt context. Other
watch-dogs are unaffected.
The watch-dog timer may generate an input to the interrupt arbiter if
IMR[6] is set. The status of the Watch-dog timer can be seen as Bit
6 of the Interrupt Status Register, ISR[6]. When a Watch-dog timer
that is programmed to generate an interrupt times out it enters the
arbitration process. It will then only allow receivers to enter the enter
the arbitration. All other sources are bidding sources are disabled.
The receivers arbitrate only amongst themselves.. The receiver only
interrupt mode of the interrupt arbiter continues until the last
watch-dog timer event has been serviced. While in the receiver only
interrupt mode, the control of the interrupt threshold level is also
disabled. The receivers arbitrate only between themselves. The
threshold value is ignored. The receiver with the most FIFO
positions filled will win the bid. Hence the user need not reduce the
bidding threshold level in the ICR to see the interrupt from a nearly
empty RxFIFO that may have caused the watch-dog time-out.
Note: When any watch-dog times our only the receivers arbitrate.
There is no increase in the probability of receiver being serviced
causing the overrun of another receiver since they will still have
priority based upon received character count.
The interrupt will be cleared automatically upon the push of the next
character received or when the RxFIFO or GRxFIFO is read. The
ICR is unaffected by the watch-dog time-out interrupt and normal
interrupt threshold level sensing resumes after the last watch-dog
timer event has been processed. If other interrupt sources are
active, the IRQN pin may remain low.
Wake-up Mode
The SC28L194 provides two modes of this common asynchronous
“party line” protocol: the new automatic mode with 3 sub modes and
the default Host operated mode. The automatic mode has several
sub modes (see below). In the full automatic the internal state
machine devoted to this function will handle all operations
associated with address recognition, data handling, receiver enables
and disables. In both modes the meaning of the parity bit is
changed. It is often referred to as the A/D bit or the address/data bit.
It is used to indicate whether the byte presently in the receiver shift
register is an “address” byte or a “data” byte. “1” usually means
address; “0” data.
Its purpose is to allow several receivers connected to the same data
source to be individually addressed. Of course addressing could be
by group also. Normally the “Master” would send an address byte to
all receivers “listening” The receiver would then recognize its
address and enable itself receiving the following data stream. Upon
receipt of an address not its own it would then disable itself. As
descried below appropriate status bits are available to describe the
operation.
Enabling the Wake-up mode
This mode is selected by programming bits MR1[4:3] to ’11’. The
sub modes are controlled by bits 6, 1, 0 in the MR0 register. Bit 6
controls the loading of the address byte to the RxFIFO and MR0[1:0]
determines the sub mode as shown in the following table.
MR0[1:0] = 00 Normal Wake-up Mode (default). Host controls
operation via interrupts and commands written to
the command register (CR).
MR0[1:0] = 01 Auto wake. Enable receiver on address
recognition for this station. Upon recognition of
its assigned address, in the Auto Wake mode,
the local receiver will be enabled and normal
receiver communications with the host will be
established.
MR0[1:0] = 10 Auto Doze. Disable receiver on address
recognition, not for this station. Upon recognition
of an address character that is not its own, in the
Auto Doze mode, the receiver will be disabled
and the address just received either discarded or
pushed to the RxFIFO depending on the
programming of MR0[6].
MR0[1:0] = 11 Auto wake and doze. Both modes above. The
programming of MR0[1:0] to 11 will enable both
the auto wake and auto doze features.
The enabling of the wake-up mode executes a partial enabling
of the receiver state machine. Even though the receiver has
been reset the Wake-up mode will over ride the disable and
reset condition.
Normal Wake-up (The default configuration)
In the default configuration for this mode of operation, a ’master
station transmits an address character followed by data characters
for the addressed ’slave’ station. The slave stations, whose
receivers are normally disabled (not reset), examine the received
data stream and interrupts the CPU (by setting RxRDY) only upon
receipt of an address character. The CPU (host) compares the
received address to its station address and enables the receiver if it
wishes to receive the subsequent data characters. Upon receipt of
another address character, the CPU may disable the receiver to
initiate the process again.
A transmitted character consists of a start bit, the programmed
number of data bits, an address/data (A/D) bit, and the programmed
number of stop bits. The polarity of the transmitted A/D bit is
selected by the CPU by programming bit MR1[2]. MR1[2] = 0
transmits a zero in the A/D bit position which identifies the
corresponding data bits as data. MR1[2] = 1 transmits a one in the
A/D bit position which identifies the corresponding data bits as an
address. The CPU should program the mode register prior to
loading the corresponding data bytes into the TxFIFO.
Philips Semiconductors Product data sheet
SC28L194Quad UART for 3.3 V and 5 V supply voltage
2006 Aug 15
14
While in this mode, the receiver continuously looks at the received
data stream, whether it is enabled or disabled. If disabled, it sets the
RxRDY status bit and loads the character into the RxFIFO if the
received A/D bit is a one, but discards the received character if the
received A/D bit is a zero. If the receiver is enabled, all received
characters are transferred to the CPU via the RxFIFO. In either
case, the data bits are loaded into the data FIFO while the A/D bit is
loaded into the status FIFO position normally used for parity error
(SR[5]). Framing error, overrun error, and break detect operate
normally whether or not the receiver is enabled.
Automatic Operation, Wake-up and Doze
The automatic configuration for this mode uses onboard
comparators to examine incoming address characters. Each UART
channel may be assigned a unique address character. See the
address register map and the description of the Address
Recognition Character Register (ARCR). The device may be
programmed to automatically awaken a sleeping receiver and/or
disable an active receiver based upon address characters received.
The operation of the basic receiver is the same as described above
for the default mode of wake-up operation except that the CPU need
not be interrupted to make a change in the receiver status.
Three bits in the Mode Register 0, (MR0), control the address
recognition operation. MR0[6] controls the RxFIFO operation of the
received character; MR0[1:0] controls the Wake-up mode options. If
MR0[6] is set the address character will be pushed onto the
RxFIFO, otherwise the character will be discarded. (The charter is
stripped from the data stream) The MR0[1:0] bits set the options as
follows: A b’00 in this field, the default or power-on condition, puts
the device in the default (CPU controlled) Wake-up mode of
operation as described above. The auto-wake mode, enabled if
MR0[0] is set, will cause the dedicated comparators to examine
each address character presented by the receiver. If the received
character matches the reference character in ARCR, the receiver
will be enabled and all subsequent characters will be FIFOed until
another address event occurs or the host CPU disables the receiver
explicitly. The auto doze mode, enabled if MR0[1] is set, will
automatically disable the receiver if an address is received that does
not match the reference character in the ARCR.
The UART channel can present the address recognition event to the
interrupt arbiter for IRQN generation. The IRQN generation may be
masked by setting bit 5 of the Interrupt Mask Register, IMR. The bid
level of an address recognition event is controlled by the Bidding
Control Register, BCRA, of the channel.
Note: To ensure proper operation, the host CPU must clear any
pending Address Recognition interrupt before enabling a disabled
receiver operating in the Special or Wake-up mode. This may be
accomplished via the CR commands (or a read of the XISR) to
clear the Address Interrupt or by resetting the receiver.
Xon/Xoff Operation
Receiver Mode
Since the receiving FIFO resources in the Quad UART are limited,
some means of controlling a remote transmitter is desirable in order
to lessen the probability of receiver overrun. The Quad UART
provides two methods of controlling the data flow. A hardware
assisted means of accomplishing control, the so-called out-of-band
flow control, and an in-band flow control method.
The out-of-band flow control is implemented through the
CTSN-RTSN signaling via the I/O ports. The operation of these
hardware handshake signals is described in the receiver and
transmitter discussions.
In-band flow control is a protocol for controlling a remote transmitter
by embedding special characters within the message stream, itself.
Two characters, Xon and Xoff, which do not represent normal
printable characters take on flow control definitions when the
Xon/Xoff capability is enabled. Flow control characters received may
be used to gate the channel transmitter on and off. This activity is
referred to as Auto-transmitter mode. To protect the channel receiver
from overrun, fixed fill levels (hardware set at 12 characters) of the
RxFIFO may be employed to automatically insert Xon/Xoff
characters in the transmitter’s data stream. This mode of operation
is referred to as auto-receiver mode. Commands issued by the host
CPU via the CR can simulate all these conditions.
Auto-Transmitter Mode
When a channel receiver pushes an Xoff character into the RxFIFO,
the channel transmitter will finish transmission of the current
character and then stop transmitting. A transmitter so idled can be
restarted by the receipt of an Xon character by the receiver, or by a
hardware or software reset. The last option results in the loss of the
un-transmitted contents of the TxFIFO. When operating in this mode
the Command Register commands for the transmitter are not
effective.
While idle data may be written to the TxFIFO and it continues to
present its fill level to the interrupt arbiter and maintains the integrity
of its status registers.
Use of ’00’ as an Xon/Xoff character is complicated by the Receiver
break operation which pushes a ’00’ character on the RxFIFO. The
Xon/Xoff character detectors do not discriminate this case from an
Xon/Xoff character received through the RxD pin.
Note: To be recognized as an Xon or Xoff character, the receiver
must have room in the RxFIFO to accommodate the character. An
Xon/Xoff character that is received resulting in a receiver overrun
does not effect the transmitter nor is it pushed into the RxFIFO,
regardless of the state of the Xon/Xoff transparency bit, MR0(7).
Note: Xon /Xoff Characters
The Xon/Xoff characters with errors will be accepted as valid. The
user has the option sending or not sending these characters to the
FIFO. Error bits associated with Xon/Xoff will be stored normally to
the receiver FIFO.
The channel’s transmitter may be programmed to automatically
transmit an Xoff character without host CPU intervention when the
RxFIFO fill level exceeds a fixed limit (12). In this mode, it will
conversely transmit an Xon character when the RxFIFO level drops
below a second fixed limit (8). A character from the TxFIFO that has
been loaded into the TxD shift register will continue to transmit.
Character(s) in the TxFIFO that have not been popped are
unaffected by the Xon or Xoff transmission. They will be transmitted
after the Xon/Xoff activity concludes.
If the fill level condition that initiates Xon activity negates before the
flow control character can begin transmission, the transmission of
the flow control character will not occur, i.e. either of the following
sequences may be transmitted depending on the timing of the FIFO
level changes with respect to the normal character times:
Character Xoff Xon Character
Character Character
Hardware keeps track of Xoff characters sent that are not rescinded
by an Xon. This logic is reset by writing MR0(3) to ’0’. If the user
drops out of Auto-receiver mode while the XISR shows Xon as the
last character sent, the Xon/Xoff logic will not automatically send the
negating Xon.
Philips Semiconductors Product data sheet
SC28L194Quad UART for 3.3 V and 5 V supply voltage
2006 Aug 15
15
Host mode
When neither the auto-receiver nor auto-transmitter modes are set,
the Xon/Xoff logic is operating in the host mode. In host mode, all
activity of the Xon/Xoff logic is initiated by commands to the CRx
command forces the transmitter to disable exactly as though an Xoff
character had been received by the RxFIFO. The transmitter will
remain disabled until the chip is reset or the CR(7:3) = 10110 (Xoff
resume) command is given. In particular, reception of an Xon or
disabling or re-enabling the transmitter will NOT cause resumption
of transmission. Redundant CRTX-- commands, i.e. CRTXon
CRTXon, are harmless, although they waste time. A CRTXon may
be used to cancel a CRTXoff (and vice versa) but both may be
transmitted depending on the timing with the transmit state machine.
The kill CRTX command can be used to cleanly terminate any
CRTX commands pending with the minimum impact on the
transmitter.
Note: In no case will an Xon/Xoff character transmission be aborted.
Once the character is loaded into the TX Shift Register, transmission
continues until completion or a chip reset is encountered.
The kill CRTX command has no effect in either of the Auto modes.
Mode Control
Xon/Xoff mode control is accomplished via the MR0. Bits 3 and 2
reset to zero resulting in all Xon/Xoff processing being disabled. If
MR0[2] is set, the transmitter may be gated by Xon/Xoff characters
received. If MR0[3] is set, the transmitter will transmit Xon and Xoff
when triggered by attainment of fixed fill levels in the channel
RxFIFO. The MR0[7] bit also has an Xon/Xoff function control. If this
bit is set, a received Xon or Xoff character is not pushed into the
RxFIFO. If cleared, the power-on and reset default, the received
Xon or Xoff character is pushed onto the RxFIFO for examination by
the host CPU. The MR0(7) function operates regardless of the value
in MR0(3:2)
Xon/Xoff Interrupts
The Xon/Xoff logic generates interrupts only in response to
recognizing either of the characters in the XonCR or XoffCR (Xon or
Xoff Character Registers). The transmitter activity initiated by the
Xon/Xoff logic or any CR command does not generate an interrupt.
The character comparators operate regardless of the value in
MR0(3:2). Hence the comparators may be used as general purpose
character detectors by setting MR0(3:2)=’00’ and enabling the
Xon/Xoff interrupt in the IMR.
The Quad UART can present the Xon/Xoff recognition event to
the interrupt arbiter for IRQN generation. The IRQN generation may
be masked by setting bit 4 of the Interrupt Mask Register, IMR. The
bid level of an Xon/Xoff recognition event is controlled by the
Bidding Control Register X, BCRX, of the channel. The interrupt
status can be examined in ISR[4]. If cleared, no Xon/Xoff recognition
event is interrupting. If set, an Xon or Xoff recognition event has
been detected. The X Interrupt Status Register, XISR, can be read
for details of the interrupt and to examine other, non-interrupting,
status of the Xon/Xoff logic. Refer to the XISR in the Register
Descriptions.
The character recognition function and the associated interrupt
generation is disabled on hardware or software reset.
REGISTER DEFINITIONS
The operation of the Quad UART is programmed by writing control
words into the appropriate registers. Operational feedback is
provided via status registers which can be read by the host CPU.
The Quad UART addressing is loosely divided, by the address bit
A(7), into two parts:
1. That part which is concerned with the configuration of the chip
interface and communication modes.
This part controls the elements of host interface setup, interrupt
arbitration, I/O Port Configuration that part of the UART channel
definitions that do not change in normal data handling. This
section is listed in the “Register Map, Control”.
2. That part concerned with the transmission and reception of the
bit streams.
This part concerns the data status, FIFO fill levels, data error
conditions, channel status, data flow control (hand shaking). This
section is listed in the “Register Map, Data”.

SC28L194A1BE,557

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
UART Interface IC UART QUAD W/FIFO
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union