Philips Semiconductors Product data sheet
SC28L194Quad UART for 3.3 V and 5 V supply voltage
2006 Aug 15
4
Pin Description
MNEMONIC TYPE DESCRIPTION
SClk I Host system clock. Used to time operations in the Host Interface and clock internal logic. Must be greater than
twice the frequency of highest X1, Counter/Timer, TxC (1x) or RxC (1x) input frequency.
CEN I Chip select: Active low. When asserted, allows I/O access to QUART registers by host CPU. W_RN signal
indicates direction. (Must not be active in IACKN cycle)
A(7:0) I Address lines (A[6] is NOT used. See “Host Interface” )
D(7:0) I/O 8-bit bi-directional data bus. Carries command and status information between 28L194 and the host CPU.
Used to convey parallel data for serial I/O between the host CPU and the 28L194
W_RN I Write Read not control: When high indicates that the host CPU will write to a 28L194 register or transmit FIFO.
When low, indicates a read cycle. 0 = Read; 1 = Write
DACKN O Data Acknowledge: Active low. When asserted, it signals that the last transfer of the D lines is complete.
Open drain requires a pull-up device.
IRQN O Interrupt Request: Active low. When asserted, indicates that the 28L194 requires service for pending
interrupt(s). Open drain requires a pull-up device.
IACKN I Interrupt Acknowledge: Active low. When asserted, indicates that the host CPU has initiated an interrupt
acknowledge cycle. (Do not use CEN in an IACKN cycle)
TD(a-d) O Transmit Data: Serial outputs from the 4 UARTs.
RD(a-d) I Receive Data: Serial inputs to the 4 UARTs
I/O0(a-d) I/O Input/Output 0: Multi-use input or output pin for the UART.
I/O1(a-d) I/O Input/Output 1: Multi-use input or output pin for the UART.
I/O2(a-d) I/O Input/Output 2: Multi-use input or output pin for the UART.
I/O3(a-d) I/O Input/Output 3: Multi-use input or output pin for the UART.
Gin(1:0) I Global general purpose inputs, available to any/all channels.
Gout(1:0) O Global general purpose outputs, available from any channel.
RESETN I Master reset: Active Low. Must be asserted at power up and may be asserted at other times to reset and
restart the system. See “Reset Conditions” at end of register map. Minimum width 10 SCLK.
X1/CCLK I Crystal 1 or Communication Clock: This pin may be connected to one side of a 2-8 MHz crystal. It may
alternatively be driven by an external clock in this frequency range. Standard frequency = 3.6864 MHz
X2 O Crystal 2: If a crystal is used, this is the connection to the second terminal. If a clock signal drives X1, this pin
must be left unconnected.
Power Supplies I 16 pins total 8 pins for Vss, 8 pins for Vcc
NOTE:
1. Many output pins will have very fast edges, especially when lightly loaded (less than 20 pf). These edges may move as fast as 1 to 3 ns fall
or rise time. The user must be aware of the possible generation of ringing and reflections on improperly terminated interconnections. See
previous note on Sclk noise under pin assignments.
ABSOLUTE MAXIMUM RATINGS
1
SYMBOL PARAMETER RATING UNIT
T
amb
Operating ambient temperature range
2
See Note 3 °C
T
stg
Storage temperature range -65 to +150 °C
V
CC
Voltage from V
DD
to V
SS
4
-0.5 to +7.0 V
V
SS
Voltage from any pin to V
SS
-0.5 to V
CC
+ 0.5 V
PD Package Power Dissipation (PLCC) 2.87 W
PD Package Power Dissipation (LQFP) 2 W
Derating factor above 25°C (PLCC package) 23 mW/°C
Derating factor above 25°C (LQFP package) 16 mW/°C
NOTES:
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and
the functional operation of the device at these or any other conditions above those indicated in the Operation Section of this specification is
not implied.
2. For operating at elevated temperatures, the device must be derated based on +150°C maximum junction temperature.
3. Parameters are valid over specified temperature range. See Ordering Information table for applicable temperature range and operating
supply range.
4. This product includes circuitry specifically designed for the protewction of its internal devices from damaging effects of excessive static
charge.
Philips Semiconductors Product data sheet
SC28L194Quad UART for 3.3 V and 5 V supply voltage
2006 Aug 15
5
BLOCK DIAGRAM
Block Diagram SC28L194
HOST INTERFACE
TIMING AND BAUD RATE
GENERATOR
INTERRUPT ARBITRATION
I/O PORT TIMING AND
INTERFACE
FULL DUPLEX UART CHANNEL
FULL DUPLEX UART CHANNEL
FULL DUPLEX UART CHANNEL
FULL DUPLEX UART CHANNEL
INPUT BUFFERS AND OUTPUT DRIVERS
DATA DRIVERS AND MODEM INTERFACE
SD00524
Figure 2. Block Diagram
As shown in the block diagram, the Quad UART consists of an
interrupt arbiter, host interface, timing blocks and four UART channel
blocks. The four channels blocks operate independently, interacting
only with the timing, host I/F and interrupt blocks.
FUNCTIONAL DESCRIPTION
The SC28L194 is composed of several functional blocks:
Synchronous host interface block
A timing block consisting of a common baud rate generator
making 22 industry standard baud rates and 2 16-bit counters
used for non-standard baud rate generation
4 identical independent full duplex UART channel blocks
Interrupt arbitration system evaluating 24 contenders
I/O port control section and change of state detectors.
CONCEPTUAL OVERVIEW
Host Interface
The Host interface is comprised of the signal pins CEN, W/RN,
IACKN, DACKN, IRQN Sclk and provides all the control for data
transfer between the external and internal data buses of the host
and the QUART. The host interface operates in a synchronous mode
with the system (Sclk) which has been designed for a nominal
operating frequency of 33 MHz. The interface operates in either of
two modes; synchronous or asynchronous to the Sclk However
the bus cycle within the QUART always takes place in four Sclk
cycles after CEN is recognized. These four cycles are the C1, C2,
C3, C4 periods shown in the timing diagrams. DACKN always
occurs in the C4 time and occurs approximately 18 ns after the
rising edge of C4.
Addressing of the various functions of the QUART is through the
address bus A(7:0). To maintain upward compatibility with the
SC28L/C198 Octart the 8 bit address is still defined as such.
However A(6) is NOT used and is internally connected to Vss
(ground). The pin is, therefore, not included in the pin diagram. The
address space is controlled by A(5:0) and A(7). A[7], in a general
sense, is used to separate the data portion of the circuit from the
control portion.
Asynchronous bus cycle
The asynchronous mode requires one bus cycle of the chip select
(CEN) for each read or write to the chip. No more action will occur
on the bus after the C4 time until CEN is returned high.
Synchronous bus cycle
In the synchronous mode a read or write will be done every four
cycles of the Sclk. CEN does not require cycling but must remain
low to keep the synchronous accesses active. This provides a burst
mode of access to the chip.
In both cases each read or write operation(s) will be completed in
four (4) Sclk cycles. The difference in the two modes is only that the
asynchronous mode will not begin another bus cycle if the CEN
remains active after the four internal Sclk have completed. Internally
the asynchronous cycle will terminate after the four periods of Sclk
regardless of how long CEN is held active
In all cases the internal action will terminate at the withdrawal of
CEN. Synchronous CEN cycles shorter than multiples of four Sclk
cycles minus 1 Sclk and asynchronous CEN cycles shorter than four
Sclk cycles may cause short read or write cycles and produce
corrupted data transfers.
Timing Circuits
The timing block consists of a crystal oscillator, a fixed baud rate
generator (BRG), a pair of programmable 16 bit register based
counters. A buffer for the System Clock generates internal timing for
processes not directly concerned with serial data flow.
Crystal Oscillator
The crystal oscillator operates directly from a crystal, tuned between
1.0 and 8.0 MHz, connected across the X1/CCLK and X2 inputs with
a minimum of external components. BRG values listed for the clock
select registers correspond to a 3.6864 MHz crystal frequency. Use
of a 7.3728 MHz crystal will double the Communication Clock
frequencies.
An external clock in the 100 KHz to 10 MHz frequency range may
be connected to X1/CCLK. If an external clock is used instead of a
crystal, X1/CCLK must be driven and X2 left floating. The X1 clock
serves as the basic timing reference for the baud rate generator
(BRG) and is available to the BRG timers. The X1 oscillator input
Philips Semiconductors Product data sheet
SC28L194Quad UART for 3.3 V and 5 V supply voltage
2006 Aug 15
6
may be left unused if the internal BRG is not used and the X1 signal
is not selected for any counter input.
Sclk - System Clock
A clock frequency, within the limits specified in the electrical
specifications, must be supplied for the system clock Sclk. To
ensure the proper operation of internal controllers, the Sclk
frequency provided, must be strictly greater than twice the frequency
of X1 crystal clock, or any external 1x data clock input. The system
clock serves as the basic timing reference for the host interface and
other internal circuits.
Baud Rate Generator BRG
The baud rate generator operates from the oscillator or external
X1/CCLK clock input and is capable of generating 22 commonly
used data communications baud rates ranging from 50 to 230.4K
baud. These common rates may be doubled (up to 460.8 and 500K
baud) when faster clocks are used on the X1/X2 clock inputs. (See
Receiver and Transmitter Clock Select Register descriptions.) All of
these are available simultaneously for use by any receiver or
transmitter. The clock outputs from the BRG are at 16X the actual
baud rate.
BRG Counters (Used for random baud rate generation)
The two BRG Timers are programmable 16 bit dividers that are used
for generating miscellaneous clocks. These clocks may be used by
any or all of the receivers and transmitters in the Octart or output on
the general purpose output pin GPO.
Each timer unit has eight different clock sources available to it as
described in the BRG Timer Control Register. (BRGTCR). Note that
the timer run and stop controls are also contained in this register.
The BRG Timers generate a symmetrical square wave whose half
period is equal in time to the division of the selected BRG Timer
clock source by the number loaded to the BRG Timer Reload
Registers ( BRGTRU and BRGTRL). Thus, the output frequency will
be the clock source frequency divided by twice the value loaded to
the BRGTRU and BRGTRL registers. This is the result of counting
down once for the high portion of the output wave and once for the
low portion.
Whenever the these timers are selected via the receiver or
transmitter Clock Select register their output will be configured as a
16x clock for the respective receiver or transmitter. Therefore one
needs to program the timers to generate a clock 16 times faster than
the data rate. The formula for calculating ’n’, the number loaded to
the BRGTRU and BRGTRL registers, is shown below.
n +
ǒ
BRG Timer Input frequency
2 @ 16 @ desired baud rate
Ǔ
–1
Note: ’n’ may assume values of 0 and 1. In previous Philips data
communications controllers these values were not allowed.
The BRG timer input frequency is controlled by the BRG Timer
control register (BRGTCR)
The frequency generated from the above formula will be at a rate 16
times faster than the desired baud rate. The transmitter and receiver
state machines include divide by 16 circuits which provide the final
frequency and provide various timing edges used in the qualifying
the serial data bit stream. Often this division will result in a
non-integer value; 26.3 for example. One may only program integer
numbers to a digital divider. There for 26 would be chosen. If 26.7
was the result of the division then 27 would be chosen. This gives a
baud rate error of 0.3/26.3 or 0.3/26.7. which yields a percentage
error of 1.14% or 1.12% respectively; well within the ability of the
asynchronous mode of operation.
One should be cautious about the assumed benign effects of small
errors since the other receiver or transmitter with which one is
communicating may also have a small error in the precise baud rate.
In a “clean” communications environment using one start bit, eight
data bits and one stop bit the total difference allowed between the
transmitter and receiver frequency is approximately 4.6%. Less than
eight data bits will increase this percentage.
Channel Blocks
There are four channel blocks, each containing an I/O port control, a
data format control, and a single full duplex UART channel
consisting of a receiver and a transmitter with their associated 16
byte FIFOs. Each block has its own status register, interrupt status
and interrupt mask registers and their interface to the interrupt
arbitration system.
A highly programmable character recognition system is also
included in each block. This system is used for the Xon/Xoff flow
control and the multi-drop (”9 bit mode”) address character
recognition. It may also be used for general purpose character
recognition.
Four I/O pins are provided for each channel. These pins are
configured individually to be inputs or outputs. As inputs they may
be used to bring external data to the bus, as clocks for internal
functions or external control signals. Each I/O pin has a “Change of
State” detector. The change detectors are used to signal a change in
the signal level at the pin (Either 0 to 1 or 1 to 0) The level change
on these pins must be stable for 25 to 50 Us (two edges of the 38.4
KHz baud rate clock) before the detectors will signal a valid change.
These are typically used for interface signals from modems to the
QUART and from there to the host. See the description of the
“UART channel” under detailed descriptions below.
Character Recognition
Character recognition is specific to each of the four UARTs. Three
programmable characters are provided for the character recognition
for each channel. The three are general purpose in nature and may
be set to only cause an interrupt or to initiate some rather complex
operations specific to “Multi-drop” address recognition or in-band
Xon/Xoff flow control.
Character recognition is accomplished via CAM memory. The
Content Addressable Memory continually examines the incoming
data stream. Upon the recognition of a control character appropriate
bits are set in the Xon/Xoff Interrupt Status Register (XISR) and
Interrupt Status Register (ISR). The setting of these bit(s) will initiate
any of the automatic sequences or and/or an interrupt that may have
enabled via the MR0 register.
The characters of the recognition system are not controlled by the
software or hardware reset. They do not have a pre-defined “reset
value”. They may, however, be loaded by a “Gang White” or “Gang
Load” command as described in the “Xon Xoff Characters”
paragraph.
Note: Character recognition is further described in the
Minor Modes
of Operation.

SC28L194A1BE,557

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
UART Interface IC UART QUAD W/FIFO
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union