ISPLSI 1024EA-200LT100

ispLSI
®
1024EA
In-System Programmable High Density PLD
1024ea_02 1
USE ispMACH 4A5 FOR NEW
5V DESIGNS
Functional Block DiagramFeatures
HIGH DENSITY PROGRAMMABLE LOGIC
4000 PLD Gates
48 I/O Pins, Two Dedicated Inputs
144 Registers
High Speed Global Interconnect
Wide Input Gating for Fast Counters, State
Machines, Address Decoders, etc.
Small Logic Block Size for Random Logic
NEW FEATURES
100% IEEE 1149.1 Boundary Scan Testable
ispJTAG™ In-System Programmable via IEEE 1149.1
(JTAG) Test Access Port
User Selectable 3.3V or 5V I/O Supports Mixed-
Voltage Systems (V
CCIO Pin)
Open-Drain Output Option
HIGH PERFORMANCE E
2
CMOS
®
TECHNOLOGY
fmax = 200 MHz Maximum Operating Frequency
tpd = 4.5 ns Propagation Delay
TTL Compatible Inputs and Outputs
Electrically Erasable and Reprogrammable
Non-Volatile
100% Tested at Time of Manufacture
Unused Product Term Shutdown Saves Power
IN-SYSTEM PROGRAMMABLE
Increased Manufacturing Yields, Reduced Time-to-
Market and Improved Product Quality
Reprogram Soldered Devices for Faster Prototyping
OFFERS THE EASE OF USE AND FAST SYSTEM
SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY
OF FIELD PROGRAMMABLE GATE ARRAYS
Complete Programmable Device Can Combine Glue
Logic and Structured Designs
Enhanced Pin Locking Capability
Four Dedicated Clock Input Pins
Synchronous and Asynchronous Clocks
Programmable Output Slew Rate Control to
Minimize Switching Noise
Flexible Pin Placement
Optimized Global Routing Pool Provides Global
Interconnectivity
Output Routing Pool
B0 B1 B2 B3 B4 B5 B6 B7
A0
A1
A2
A3
A4
A5
A6
A7
C7
C6
C5
C4
C3
C2
C1
C0
Output Routing Pool
Output Routing Pool
CLK
Global Routing Pool (GRP)
0139/1024EA
Logic
Array
DQ
DQ
DQ
DQ
GLB
Description
The ispLSI 1024EA is a High Density Programmable
Logic Device containing 144 Registers, 48 Universal I/O
pins, two Dedicated Input pins, four Dedicated Clock
Input pins and a Global Routing Pool (GRP). The GRP
provides complete interconnectivity between all of these
elements. The ispLSI 1024EA features 5V in-system
diagnostic capabilities via IEEE 1149.1 Test Access Port.
The ispLSI 1024EA device offers non-volatile
reprogrammability of the logic, as well as the intercon-
nects to provide truly reconfigurable systems. A functional
superset of the ispLSI 1024 architecture, the ispLSI
1024EA device adds user selectable 3.3V or 5V I/O and
open-drain output options.
The basic unit of logic on the ispLSI 1024EA device is the
Generic Logic Block (GLB). The GLBs are labeled A0,
A1…D7 (Figure 1). There are a total of 24 GLBs in the
ispLSI 1024EA device. Each GLB has 18 inputs, a
programmable AND/OR/Exclusive OR array, and four
outputs which can be configured to be either combinato-
rial or registered. Inputs to the GLB come from the GRP
and dedicated inputs. All of the GLB outputs are brought
back into the GRP so that they can be connected to the
inputs of any other GLB on the device.
Copyright © 2002 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject
to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. January 2002
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
2
Specifications ispLSI 1024EA
USE ispMACH 4A5 FOR NEW
5V DESIGNS
Functional Block Diagram
Figure 1. ispLSI 1024EA Functional Block Diagram
The device also has 48 I/O cells, each of which is directly
connected to an I/O pin. Each I/O cell can be individually
programmed to be a combinatorial input, registered in-
put, latched input, output or bi-directional
I/O pin with 3-state control. The signal levels are TTL
compatible voltages and the output drivers can source 4
mA or sink 8 mA. Each output can be programmed
independently for fast or slow output slew rate to mini-
mize overall output switching noise. By connecting the
VCCIO pin to a common 5V or 3.3V power supply, I/O
output levels can be matched to 5V or 3.3V-compatible
voltages.
Eight GLBs, 16 I/O cells, dedicated inputs (if available)
and one ORP are connected together to make a
Megablock (Figure 1). The outputs of the eight GLBs are
connected to a set of 16 universal I/O cells by the ORP.
Each ispLSI 1024EA device contains three Megablocks.
The GRP has, as its inputs, the outputs from all of the
GLBs and all of the inputs from the bi-directional I/O cells.
All of these signals are made available to the inputs of the
GLBs. Delays through the GRP have been equalized to
minimize timing skew.
Clocks in the ispLSI 1024EA device are selected using
the Clock Distribution Network. Four dedicated clock pins
(Y0, Y1, Y2 and Y3) are brought into the distribution
network, and five clock outputs (CLK 0, CLK 1, CLK 2,
IOCLK 0 and IOCLK 1) are provided to route clocks to the
GLBs and I/O cells. The Clock Distribution Network can
also be driven from a special clock GLB (C0 on the ispLSI
1024EA device). The logic of this GLB allows the user to
create an internal clock from a combination of internal
signals within the device.
Programmable Open-Drain Outputs
In addition to the standard output configuration, the
outputs of the ispLSI 1024EA are individually program-
mable, either as a standard totem-pole output or an
open-drain output. The totem-pole output drives the
specified Voh and Vol levels, whereas the open-drain
output drives only the specified Vol. The Voh level on the
open-drain output depends on the external loading and
pull-up. This output configuration is controlled by a pro-
grammable fuse. The default configuration when the
device is in bulk erased state is totem-pole configuration.
The open-drain/totem-pole option is selectable through
the Lattice software tools.
RESET
Global
Routing
Pool
(GRP)
CLK 0
CLK 1
CLK 2
IOCLK 0
IOCLK 1
Clock
Distribution
Network
C7
C6
C5
C4
C3
C2
C1
C0
A0
A1
A2
A3
A4
A5
A6
A7
Generic
Logic Blocks
(GLBs)
Megablock
Output Routing Pool (ORP)
Output Routing Pool (ORP)
Output Routing Pool (ORP)
Input Bus
VCCIO
lnput Bus
lnput Bus
I/O 16
I/O 17
I/O 18
I/O 19
I/O 20
I/O 21
I/O 22
I/O 23
I/O 24
I/O 25
I/O 26
I/O 27
I/O 28
I/O 29
I/O 30
I/O 31
I/O 35
I/O 34
I/O 33
I/O 32
I/O 0
I/O 1
I/O 2
I/O 3
I/O 12
I/O 13
I/O 14
I/O 15
TDI
TDO
TMS
TCK
I/O 8
I/O 9
I/O 10
I/O 11
I/O 4
I/O 5
I/O 6
I/O 7
I/O 47
I/O 46
I/O 45
I/O 44
GOE 1/IN 5
GOE 0/IN 4
I/O 43
I/O 42
I/O 41
I/O 40
I/O 39
I/O 38
I/O 37
I/O 36
Y0
Y1
Y2
Y3
B0 B1 B2 B3 B4 B5 B6 B7
0139B/1024EA
3
Specifications ispLSI 1024EA
USE ispMACH 4A5 FOR NEW
5V DESIGNS
Symbol Parameter Min Max Units
t
btcp
TCK [BSCAN test] clock pulse width 100 ns
t
btch
TCK [BSCAN test] pulse width high 50 ns
t
btcl
TCK [BSCAN test] pulse width low 50 ns
t
btsu
TCK [BSCAN test] setup time 20 ns
t
bth
TCK [BSCAN test] hold time 25 ns
t
rf
TCK [BSCAN test] rise and fall time 50 mV/ns
t
btco
TAP controller falling edge of clock to valid output 25 ns
t
btoz
TAP controller falling edge of clock to data output disable 25 ns
t
btvo
TAP controller falling edge of clock to data output enable 25 ns
t
btcpsu
BSCAN test Capture register setup time 40 ns
t
btcph
BSCAN test Capture register hold time 25 ns
t
btuco
BSCAN test Update reg, falling edge of clock to valid output 50 ns
t
btuoz
BSCAN test Update reg, falling edge of clock to output disable 50 ns
t
btuov
BSCAN test Update reg, falling edge of clock to output enable 50 ns
Figure 2. Boundary Scan Waveforms and Timing Specifications
TMS
TDI
TCK
TDO
Data to be
captured
Data to be
driven out
Valid Data Valid Data
Valid Data Valid Data
Data Captured
btsu
T
bth
T
btcl
T
btch
T
btcp
T
btvo
T
btco
T
btoz
T
btcpsu
T
btcph
T
btuov
T
btuco
T
btuoz
T
Boundary Scan

ISPLSI 1024EA-200LT100

Mfr. #:
Manufacturer:
Lattice
Description:
IC CPLD 64MC 4.5NS 100TQFP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union