AD1836A Data Sheet
Rev. A | Page 12 of 24
through an FPGA or other large digital chip before being
applied to the AD1836A. In most cases, this will induce clock
jitter due to the fact that the clock signal is sharing common
power and ground connections with other unrelated digital
output signals.
The six DAC channels use a common serial bit clock to clock in
the serial data and a common left-right framing clock. The four
ADC channels output a common serial bit clock and a left-right
framing clock. The clock signals are all synchronous with the
sample rate.
RESET AND POWER-DOWN
Reset will power down the chip and set the control registers to
their default settings. After reset is de-asserted, an initialization
routine will run inside the AD1836A to clear all memories to
zero. This initialization lasts for approximately 4500 MCLKs.
The power-down bit in the DAC Control Register 1 and ADC
Control Register 1 will power down the respective digital
section. The analog circuitry does not power down. All other
register settings are retained.
To avoid possible synchronization problems, if MCLK is 512 f
S
or 768 f
S
, the clock rate should be set in ADC Control Register 3
within the first 3072 MCLK cycles after reset, or DLRCLK and
DBCLK should be withheld until after the internal initialization
completes (see above).
SERIAL CONTROL PORT
The AD1836A has an SPI compatible control port that permits
programming the internal control registers for the ADCs and
DACs and for reading the ADC signal level from the internal
peak detectors. The DAC output levels may be independently
programmed by means of an internal digital attenuator
adjustable in 1024 linear steps.
The SPI control port is a 4-wire serial control port. The format
is similar to the Motorola SPI format except the input data-word
is 16 bits wide. The maximum serial bit clock frequency is 8 MHz
and may be completely asynchronous to the sample rate of the
ADCs and DACs. Figure 3 shows the format of the SPI signal.
All control registers are write-only. They cannot be read back.
The ADC peak registers are read-only. They are reset to zero each
time they are read and are updated at the next sample time.
Due to an anomaly in the SPI interface, when a write to a DAC
control register follows after a read or a write to an ADC
register, it may not be executed properly. Any such write should
be performed twice.
CLATCH
CCLK
CDATA
COUT
D15
D9
D0D14
D8 D0
Figure 3. Format of SPI Signal
Data Sheet AD1836A
Rev. A | Page 13 of 24
POWER SUPPLY AND VOLTAGE REFERENCE
The AD1836A is designed for 5 V supplies. Separate power
supply pins are provided for the analog and digital sections.
These pins should be bypassed with 100 nF ceramic chip
capacitors, as close to the pins as possible, to minimize noise
pickup. A bulk aluminum electrolytic capacitor of at least 22 μF
should also be provided on the same PC board as the codec. For
critical applications, improved performance will be obtained
with separate supplies for the analog and digital sections. If this
is not possible, it is recommended that the analog and digital
supplies be isolated by means of a ferrite bead in series with
each supply. It is important that the analog supply be as clean as
possible.
For ease in interfacing to various logic families, the digital
output drivers are supplied from the ODVDD pin. For CMOS
logic, this should be connected to the 5 V digital supply. For
3.3 V logic, it should be connected to the 3.3 V supply. For TTL
levels, it can be tied to either. All digital inputs are compatible
with TTL and CMOS levels.
The internal voltage reference V
REF
is brought out on Pin 13
(FILTR) and should be bypassed as close as possible to the chip,
with a parallel combination of 10 μF and 100 nF. The reference
voltage may be used to bias external op amps to the common-
mode voltage of the input and output signal pins. The current
drawn should be limited to less than 50 μA. This source can be
connected directly to op amp inputs but should be buffered if it
is required to drive resistive networks.
The FILTD pin should be connected to an external grounded
capacitor. This pin is used to reduce the noise of the internal
DAC bias circuitry, thereby reducing the DAC output noise. In
some cases, this capacitor may be eliminated with little effect on
performance.
SERIAL DATA PORTS—DATA FORMAT
The ADC serial data output mode defaults to the popular I
2
S
format, where the data is delayed by 1 BCLK interval from the
edge of the LRCLK. By programming Bits 8 and 9 in ADC
Control Register 2, the serial mode can be changed to right
justified (RJ), left justified DSP (DSP), left justified (LJ), Packed
Mode 128, or Packed Mode 256. In the RJ mode, it is necessary
to set Bits 6 and 7 to define the width of the data-word.
The DAC serial data input mode defaults to I
2
S. By
programming Bits 5, 6, and 7 in DAC Control Register 1, the
mode can be changed to RJ, DSP, LJ, Packed Mode 128, or
Packed Mode 256. The word width defaults to 24 bits but
can be changed by programming Bits 3 and 4 in DAC Control
Register 1. The packed modes accept six channels of data at the
DSDATA1 input pin, which is routed independently to each of
the six internal DACs.
A special “auxiliary mode” is provided to allow two external
stereo ADCs and one external stereo DAC to be interfaced with
the AD1836A to provide 8 in/8 out operation. In addition, this
mode supports glueless interface to a single SHARC DSP serial
port, allowing a SHARC DSP to access all eight channels of
analog I/O. In this special mode, many pins are redefined; see
Table 11 for a list of redefined pins. Two versions of this mode
are available. In the master mode, the AD1836A provides the
LRCLK and BCLK signals for the external ADCs and DAC. In
the slave mode, external ADC1 provides the LRCLK and BCLK
signals (which must be divided down properly from the
external master clock), and the AD1836A will sync to these
external clocks. In the absence of the external ADC clocks in
slave mode, the ALRCLK and ABCLK outputs of the AD1836A
(TDM frame sync and bit clock) will default to be the same as in
master mode. See Figure 9 through Figure 11 for details of these
modes. Figure 12 shows the internal signal flow diagram of the
auxiliary mode.
The following figures show the serial mode formats.
AD1836A Data Sheet
Rev. A | Page 14 of 24
LRCLK
BCLK
SDATA
LRCLK
BCLK
SDATA
LRCLK
BCLK
SDATA
LRCLK
BCLK
SDATA
LEFT CHANNEL RIGHT CHANNEL
LEFT CHANNEL
RIGHT CHANNEL
MSB
LSB
LSB
LSB
LSB LSB
LEFT JUSTIFIED MODE––16 BITS TO 24 BITS PER CHANNEL
I
2
S MODE––16 BITS TO 24 BITS PER CHANNEL
RIGHT JUSTIFIED MODE––SELECT NUMBER OF BITS PER CHANNEL
DSP MODE––16 BITS TO 24 BITS PER CHANNEL
NOTES
1. DSP MODE DOES NOT IDENTIFY CHANNEL
2. LRCLK NORMALLY OPERATES AT f
S
EXCEPT FOR DSP MODE WHICH IS 2 × f
S
3. BCLK FREQUENCY IS NORMALLY 64 × LRCLK BUT MAY BE OPERATED IN BURST MODE
MSB
MSB
MSB
LSB
LEFT CHANNEL
MSB
LSB
MSB
RIGHT CHANNEL
LSB
MSB MSB
1/f
S
Figure 4. Stereo Serial Modes

AD1836AASZRL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Interface - CODECs IC MultiCH96 kHz Codec
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet