MAX1630–MAX1635
Multi-Output, Low-Noise Power-Supply
Controllers for Notebook Computers
16 ______________________________________________________________________________________
Discharging the output capacitor through the main
inductor causes the output to momentarily go below
GND. Clamp this negative pulse with a back-biased 1A
Schottky diode across the output capacitor (Figure 1).
To ensure overvoltage protection on initial power-up,
connect signal diodes from both output voltages to VL
(cathodes to VL) to eliminate the VL power-up delay.
This circuitry protects the load from accidental overvolt-
age caused by a short-circuit across the high-side
power MOSFETs. This scheme relies on the presence
of a fuse, in series with the battery, which is blown by
the resulting crowbar current. Note that the overvoltage
circuitry will interfere with external keep-alive supplies
that hold up the outputs (such as lithium backup or hot-
swap power supplies); in such cases, the MAX1633,
MAX1634, or MAX1635 should be used.
Low-Noise Operation (PWM Mode)
PWM mode (SKIP = high) minimizes RF and audio
interference in noise-sensitive applications (such as hi-
fi multimedia-equipped systems), cellular phones, RF
communicating computers, and electromagnetic pen-
entry systems. See the summary of operating modes in
Table 2. SKIP can be driven from an external logic
signal.
Interference due to switching noise is reduced in PWM
mode by ensuring a constant switching frequency, thus
concentrating the emissions at a known frequency out-
side the system audio or IF bands. Choose an oscillator
frequency for which switching frequency harmonics
don’t overlap a sensitive frequency band. If necessary,
synchronize the oscillator to a tight-tolerance external
clock generator. To extend the output-voltage-regula-
tion range, constant operating frequency is not main-
tained under overload or dropout conditions (see
Overload and Dropout Operation section.)
PWM mode (SKIP = high) forces two changes upon the
PWM controllers. First, it disables the minimum-current
comparator, ensuring fixed-frequency operation.
Second, it changes the detection threshold for reverse-
current limit from 0mV to -100mV, allowing the inductor
current to reverse at light loads. This results in fixed-
frequency operation and continuous inductor-current
flow. This eliminates discontinuous-mode inductor ring-
ing and improves cross regulation of transformer-
coupled multiple-output supplies, particularly in circuits
that don’t use additional secondary regulation via
SECFB or V
DD
.
In most applications, tie SKIP to GND to minimize qui-
escent supply current. VL supply current with SKIP high
is typically 20mA, depending on external MOSFET gate
capacitance and switching losses.
Internal Digital Soft-Start Circuit
Soft-start allows a gradual increase of the internal cur-
rent-limit level at start-up to reduce input surge currents.
Both SMPSs contain internal digital soft-start circuits,
each controlled by a counter, a digital-to-analog con-
verter (DAC), and a current-limit comparator. In shut-
down or standby mode, the soft-start counter is reset to
zero. When an SMPS is enabled, its counter starts
counting oscillator pulses, and the DAC begins incre-
menting the comparison voltage applied to the current-
limit comparator. The DAC output increases from 0mV to
100mV in five equal steps as the count increases to 512
clocks. As a result, the main output capacitor charges
up relatively slowly. The exact time of the output rise
depends on output capacitance and load current, and
is typically 1ms with a 300kHz oscillator.
Dropout Operation
Dropout (low input-output differential operation) is
enhanced by stretching the clock pulse width to
increase the maximum duty factor. The algorithm fol-
lows: If the output voltage (V
OUT
) drops out of regula-
tion without the current limit having been reached, the
SMPS skips an off-time period (extending the on-time).
At the end of the cycle, if the output is still out of regula-
tion, the SMPS skips another off-time period. This
action can continue until three off-time periods are
skipped, effectively dividing the clock frequency by as
much as four.
The typical PWM minimum off-time is 300ns, regardless
of the operating frequency. Lowering the operating fre-
quency raises the maximum duty factor above 98%.
Adjustable-Output Feedback
(Dual Mode FB)
Fixed, preset output voltages are selected when FB_ is
connected to ground. Adjusting the main output volt-
age with external resistors is simple for any of the
MAX1630 family ICs, through resistor dividers connect-
ed to FB3 and FB5 (Figure 2). Calculate the output volt-
age with the following formula:
V
OUT
= V
REF
(1 + R1 / R2)
where V
REF
= 2.5V nominal.
The nominal output should be set approximately 1% or
2% high to make up for the MAX1630’s -2% typical
load-regulation error. For example, if designing for a
3.0V output, use a resistor ratio that results in a nominal
output voltage of 3.05V. This slight offsetting gives the
best possible accuracy. Recommended normal values
for R2 range from 5kΩ to 100kΩ. To achieve a 2.5V
nominal output, simply connect FB_ directly to CSL_.
Remote output-voltage sensing, while not possible in
fixed-output mode due to the combined nature of the
voltage-sense and current-sense inputs (CSL3 and
CSL5), is easy to do in adjustable mode by using the top
of the external resistor divider as the remote sense point.
When using adjustable mode, it is a good idea to
always set the “3.3V output” to a lower voltage than the
“5V output.” The 3.3V output must always be less than
VL, so that the voltage on CSH3 and CSL3 is within the
common-mode range of the current-sense inputs. While
VL is nominally 5V, it can be as low as 4.7V when lin-
early regulating, and as low as 4.2V when automatically
bootstrapped to CSH5.
Secondary Feedback Regulation Loop
(SECFB or V
DD
)
A flyback-winding control loop regulates a secondary
winding output, improving cross-regulation when the
primary output is lightly loaded or when there is a low
input-output differential voltage. If V
DD
or SECFB falls
below its regulation threshold, the low-side switch is
turned on for an extra 1µs. This reverses the inductor
(primary) current, pulling current from the output filter
capacitor and causing the flyback transformer to oper-
ate in forward mode. The low impedance presented by
the transformer secondary in forward mode dumps cur-
rent into the secondary output, charging up the sec-
ondary capacitor and bringing V
DD
or SECFB back into
regulation. The secondary feedback loop does not
improve secondary output accuracy in normal flyback
mode, where the main (primary) output is heavily
loaded. In this condition, secondary output accuracy is
determined by the secondary rectifier drop, transformer
turns ratio, and accuracy of the main output voltage. A
linear post-regulator may still be needed to meet strict
output-accuracy specifications.
Devices with a 12OUT linear regulator have a V
DD
pin
that regulates at a fixed 13.5V, set by an internal resis-
tor divider. The MAX1631/MAX1634 have an adjustable
secondary output voltage set by an external resistor
divider on SECFB (Figure 5). Ordinarily, the secondary
regulation point is set 5% to 10% below the voltage nor-
mally produced by the flyback effect. For example, if
the output voltage as determined by turns ratio is 15V,
set the feedback resistor ratio to produce 13.5V.
Otherwise, the SECFB one-shot might be triggered
unintentionally, unnecessarily increasing supply current
and output noise.
12V Linear Regulator Output
(MAX1630/MAX1632/MAX1633/MAX1635)
The MAX1630/MAX1632/MAX1633/MAX1635 include a
12V linear regulator output capable of delivering 120mA
of output current. Typically, greater current is available
at the expense of output accuracy. If an accurate output
of more than 120mA is needed, an external pass tran-
MAX1631
MAX1634
POSITIVE
SECONDARY
OUTPUT
MAIN
OUTPUT
DH_
V+
SECFB
2.5V REF
R2
R1
1-SHOT
TRIG
DL_
WHERE V
REF
(NOMINAL) = 2.5V+V
TRIP
= V
REF
(1 + –––)
R1
R2
MAX1630–MAX1635
Multi-Output, Low-Noise Power-Supply
Controllers for Notebook Computers
______________________________________________________________________________________ 17
Figure 5. Adjusting the Secondary Output Voltage with SECFB
MAX1630
MAX1632
MAX1633
MAX1635
V
DD
OUTPUT
+12V OUTPUT
200mA
MAIN
OUTPUT
2N3906
0.1μF
0.1μF
0.1μF
2.2μF
10μF
10Ω
V+
V
DD
12OUT
DH_
DL_
Figure 6. Increased 12V Linear Regulator Output Current
MAX1630–MAX1635
Multi-Output, Low-Noise Power-Supply
Controllers for Notebook Computers
18 ______________________________________________________________________________________
Kool-Mu is a registered trademark of Magnetics Div., Spang & Co.
sistor can be added. Figure 6’s circuit delivers more
than 200mA. Total output current is constrained by the
V+ input voltage and the transformer primary load (see
Maximum 15V V
DD
Output Current vs. Supply Voltage
graphs in the Typical Operating Characteristics).
__________________Design Procedure
The three predesigned 3V/5V standard application cir-
cuits (Figure 1 and Table 1) contain ready-to-use solu-
tions for common application needs. Also, two standard
flyback transformer circuits support the 12OUT linear
regulator in the Applications Information section. Use
the following design procedure to optimize these basic
schematics for different voltage or current require-
ments. But before beginning a design, firmly establish
the following:
Maximum input (battery) voltage, V
IN(MAX)
. This
value should include the worst-case conditions, such
as no-load operation when a battery charger or AC
adapter is connected but no battery is installed.
V
IN(MAX)
must not exceed 30V.
Minimum input (battery) voltage, V
IN(MIN)
. This
should be taken at full load under the lowest battery
conditions. If V
IN(MIN)
is less than 4.2V, use an external
circuit to externally hold VL above the VL undervoltage
lockout threshold. If the minimum input-output differ-
ence is less than 1.5V, the filter capacitance required to
maintain good AC load regulation increases (see Low-
Voltage Operation section).
Inductor Value
The exact inductor value isn’t critical and can be freely
adjusted to make trade-offs between size, cost, and
efficiency. Lower inductor values minimize size and
cost, but reduce efficiency due to higher peak-current
levels. The smallest inductor is achieved by lowering
the inductance until the circuit operates at the border
between continuous and discontinuous mode. Further
reducing the inductor value below this crossover point
results in discontinuous-conduction operation even at
full load. This helps lower output filter capacitance
requirements, but efficiency suffers due to high I
2
R
losses. On the other hand, higher inductor values mean
greater efficiency, but resistive losses due to extra wire
turns will eventually exceed the benefit gained from
lower peak-current levels. Also, high inductor values
can affect load-transient response (see the V
SAG
equa-
tion in the Low-Voltage Operation section). The equa-
tions that follow are for continuous-conduction
operation, since the MAX1630 family is intended mainly
for high-efficiency, battery-powered applications. See
Appendix A in Maxim’s Battery Management and DC-
DC Converter Circuit Collection for crossover-point and
discontinuous-mode equations. Discontinuous conduc-
tion doesn’t affect normal Idle Mode operation.
Three key inductor parameters must be specified:
inductance value (L), peak current (I
PEAK
), and DC
resistance (R
DC
). The following equation includes a
constant, LIR, which is the ratio of inductor peak-to-
peak AC current to DC load current. A higher LIR value
allows smaller inductance, but results in higher losses
and higher ripple. A good compromise between size
and losses is found at a 30% ripple-current to load-
current ratio (LIR = 0.3), which corresponds to a peak
inductor current 1.15 times higher than the DC load
current.
where: f = switching frequency, normally 200kHz or
300kHz
I
OUT
= maximum DC load current
LIR = ratio of AC to DC inductor current, typi-
cally 0.3; should be selected for >0.15
The nominal peak inductor current at full load is 1.15 x
I
OUT
if the above equation is used; otherwise, the peak
current can be calculated by:
The inductor’s DC resistance should be low enough that
R
DC
x I
PEAK
< 100mV, as it is a key parameter for effi-
ciency performance. If a standard off-the-shelf inductor
is not available, choose a core with an LI
2
rating greater
than L x I
PEAK
2 and wind it with the largest-diameter
wire that fits the winding area. For 300kHz applications,
ferrite core material is strongly preferred; for 200kHz
applications, Kool-Mu
®
(aluminum alloy) or even pow-
dered iron is acceptable. If light-load efficiency is unim-
portant (in desktop PC applications, for example), then
low-permeability iron-powder cores, such as the
Micrometals type found in Pulse Engineering’s 2.1µH
PE-53680, may be acceptable even at 300kHz. For
high-current applications, shielded-core geometries,
such as toroidal or pot core, help keep noise, EMI, and
switching-waveform jitter low.
I= I+
V (V -V
2 x f x L x V
PEAK LOAD
OUT IN(MAX) OUT
IN(MAX)
)
L =
VV - V
V x f x I x LIR
OUT IN(MAX) OUT
IN(MAX) OUT
()

MAX1631EAI+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Switching Controllers Multi-Out Low-Noise Power-Supply Ctlr
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union