1–10 Chapter 1: Stratix III Device Family Overview
Architecture Features
Stratix III Device Handbook, Volume 1 © March 2010 Altera Corporation
4×, 6×, 7×,, and 10× SERDES modes when using the dedicated DPA circuitry. DPA
minimizes bit errors, simplifies PCB layout and timing management for high-speed
data transfer, and eliminates channel-to-channel and channel-to-clock skew in
high-speed data transmission systems. Soft CDR can also be implemented, enabling
low-cost 1.6-Gbps clock embedded serial links.
Stratix III devices have the following dedicated circuitry for high-speed differential
I/O support:
Differential I/O buffer
Transmitter serializer
Receiver deserializer
Data realignment
Dynamic phase aligner (DPA)
Soft CDR functionality
Synchronizer (FIFO buffer)
PLLs
f For more information, refer to the High Speed Differential I/O Interfaces with DPA in
Stratix III Devices chapter.
Hot Socketing and Power-On Reset
Stratix III devices are hot-socketing compliant. Hot socketing is also known as hot
plug-in or hot swap, and power sequencing support without the use of any external
devices. Robust on-chip hot-socketing and power-sequencing support ensures proper
device operation independent of the power-up sequence. You can insert or remove a
Stratix III board in a system during system operation without causing undesirable
effects to the running system bus or the board that was inserted into the system.
The hot-socketing feature makes it easier to use Stratix III devices on PCBs that also
contain a mixture of 3.3-V, 3.0-V, 2.5-V, 1.8-V, 1.5-V, and 1.2-V devices. With the
Stratix III hot socketing feature, you do not need to ensure a specific power-up
sequence for each device on the board.
f For more information, refer to the Hot Socketing and Power-On Reset in Stratix III
Devices chapter.
Configuration
Stratix III devices are configured using one of the following four configuration
schemes:
Fast passive parallel (FPP)
Fast active serial (AS)
Passive serial (PS)
Joint Test Action Group (JTAG)
All configuration schemes use either an external controller (for example, a MAX
®
II
device or microprocessor), a configuration device, or a download cable.
Chapter 1: Stratix III Device Family Overview 1–11
Architecture Features
© March 2010 Altera Corporation Stratix III Device Handbook, Volume 1
Stratix III devices support configuration data decompression, which saves
configuration memory space and time. This feature allows you to store compressed
configuration data in configuration devices or other memory and transmit this
compressed bitstream to Stratix III devices. During configuration, the Stratix III
device decompresses the bitstream in real time and programs its SRAM cells.
Stratix III devices support decompression in the FPP when using a MAX II
device/microprocessor plus flash, fast AS, and PS configuration schemes. The
Stratix III decompression feature is not available in the FPP when using the enhanced
configuration device and JTAG configuration schemes.
f For more information, refer to the Configuring Stratix III Devices chapter.
Remote System Upgrades
Stratix III devices feature remote system upgrade capability, allowing error-free
deployment of system upgrades from a remote location securely and reliably. Soft
logic (either the Nios embedded processor or user logic) implemented in a Stratix III
device can download a new configuration image from a remote location, store it in
configuration memory, and direct the dedicated remote system upgrade circuitry to
initiate a reconfiguration cycle. The dedicated circuitry performs error detection
during and after the configuration process, and can recover from an error condition
by reverting back to a safe configuration image, and provides error status
information. This dedicated remote system upgrade circuitry is unique to Stratix
series FPGAs and helps to avoid system downtime.
f For more information, refer to the Remote System Upgrades with Stratix III Devices
chapter.
IEEE 1149.1 (JTAG) Boundary-Scan Testing
Stratix III devices support the JTAG IEEE Std. 1149.1 specification. The Boundary-Scan
Test (BST) architecture offers the capability to test pin connections without using
physical test probes and capture functional data while a device is operating normally.
Boundary-scan cells in the Stratix III device can force signals onto pins or capture data
from pin or logic array signals. Forced test data is serially shifted into the
boundary-scan cells. Captured data is serially shifted out and externally compared to
expected results. In addition to BST, you can use the IEEE Std. 1149.1 controller for
Stratix III device in-circuit reconfiguration (ICR).
f For more information, refer to the IEEE 1149.1 (JTAG) Boundary Scan Testing in
Stratix III Devices chapter.
Design Security
Stratix III devices are high-density, high-performance FPGAs with support for 256-bit
volatile and non-volatile security keys to protect designs against copying, reverse
engineering, and tampering. Stratix III devices have the ability to decrypt a
configuration bitstream using the Advanced Encryption Standard (AES) algorithm,
an industry standard encryption algorithm that is FIPS-197 certified and requires a
256-bit security key.
1–12 Chapter 1: Stratix III Device Family Overview
Architecture Features
Stratix III Device Handbook, Volume 1 © March 2010 Altera Corporation
The design security feature is available when configuring Stratix III FPGAs using the
fast passive parallel (FPP) configuration mode with an external host (such as a MAX II
device or microprocessor), or when using fast active serial (AS) or passive serial (PS)
configuration schemes.
f For more information about the design security feature, refer to the Design Security in
Stratix III Devices chapter.
SEU Mitigation
Stratix III devices have built-in error detection circuitry to detect data corruption due
to soft errors in the configuration random-access memory (CRAM) cells. This feature
allows all CRAM contents to be read and verified continuously during user mode
operation to match a configuration-computed CRC value. The enhanced CRC circuit
and frame-based configuration architecture allows detection and location of multiple,
single, and adjacent bit errors which, in conjunction with a soft circuit supplied as a
reference design, allows don’t-care soft errors in the CRAM to be ignored during
device operation. This provides a steep decrease in the effective soft error rate,
increasing system reliability.
On-chip memory block SEU mitigation is also offered using the ninth bit and a
configurable megafunction in the Quartus II software for MLAB and M9K blocks
while the M144K memory blocks have built-in error correction code (ECC) circuitry.
f For more information about the dedicated error detection circuitry, refer to the SEU
Mitigation in Stratix III Devices chapter.
Programmable Power
Stratix III delivers Programmable Power, the only FPGA with user programmable
power options balancing today’s power and performance requirements. Stratix III
devices utilize the most advanced power-saving techniques, including a variety of
process, circuit, and architecture optimizations and innovations. In addition, user
controllable power reduction techniques provide an optimal balance of performance
and power reduction specific for each design configured into the Stratix III FPGA. The
Quartus II software (starting from version 6.1) automatically optimizes designs to
meet the performance goals while simultaneously leveraging the programmable
power-saving options available in the Stratix III FPGA without the need for any
changes to the design flow.
f For more information about Programmable Power in Stratix III devices, refer to the
following documents:
Programmable Power and Temperature Sensing Diode in Stratix III Devices chapter
AN 437: Power Optimization in Stratix III FPGAs
Stratix III Programmable Power White Paper

EP3SE110F1152C3

Mfr. #:
Manufacturer:
Intel / Altera
Description:
FPGA - Field Programmable Gate Array FPGA - Stratix III 4300 LABs 744 IOs
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union