HGTP12N60A4

©2003 Fairchild Semiconductor Corporation HGTP12N60A4, HGTG12N60A4, HGT1S12N60A4S9A Rev. B2
Handling Precautions for IGBTs
Insulated Gate Bipolar Transistors are susceptible to
gate-insulation damage by the electrostatic discharge of
energy through the devices. When handling these devices,
care should be exercised to assure that the static charge
built in the handlers body capacitance is not discharged
through the device. With proper handling and application
procedures, however, IGBTs are currently being extensively
used in production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as ECCOSORBD LD26 or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage
rating of V
GEM
. Exceeding the rated V
GE
can result in
permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are
essentially capacitors. Circuits that leave the gate open-
circuited or floating should be avoided. These conditions
can result in turn-on of the device due to voltage buildup
on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal
monolithic Zener diode from gate to emitter. If gate
protection is required an external Zener is recommended.
Operating Frequency Information
Operating frequency information for a typical device
(Figure 3) is presented as a guide for estimating device
performance for a specific application. Other typical
frequency vs collector current (I
CE
) plots are possible using
the information shown for a typical unit in Figures 5, 6, 7, 8, 9
and 11. The operating frequency plot (Figure 3) of a typical
device shows f
MAX1
or f
MAX2
; whichever is smaller at each
point. The information is based on measurements of a
typical device and is bounded by the maximum rated
junction temperature.
f
MAX1
is defined by f
MAX1
= 0.05/(t
d(OFF)I
+ t
d(ON)I
).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on-state time for a 50% duty factor. Other definitions
are possible. t
d(OFF)I
and t
d(ON)I
are defined in Figure 21.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than T
JM
.
f
MAX2
is defined by f
MAX2
= (P
D
- P
C
)/(E
OFF
+ E
ON2
). The
allowable dissipation (P
D
) is defined by P
D
= (T
JM
- T
C
)/R
θJC
.
The sum of device switching and conduction losses must not
exceed P
D
. A 50% duty factor was used (Figure 3) and the
conduction losses (P
C
) are approximated by
P
C
=(V
CE
xI
CE
)/2.
E
ON2
and E
OFF
are defined in the switching waveforms
shown in Figure 21. E
ON2
is the integral of the
instantaneous power loss (I
CE
x V
CE
) during turn-on and
E
OFF
is the integral of the instantaneous power loss
(I
CE
xV
CE
) during turn-off. All tail losses are included in the
calculation for E
OFF
; i.e., the collector current equals zero
(I
CE
= 0).
HGTP12N60A4, HGTG12N60A4, HGT1S12N60A4S9A
Rev. I5
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
ACEx
ActiveArray
Bottomless
CoolFET
CROSSVOLT
DOME
EcoSPARK
E
2
CMOS
EnSigna
FACT
FACT Quiet Series
FAST
®
FASTr
FRFET
GlobalOptoisolator
GTO
HiSeC
I
2
C
ImpliedDisconnect
ISOPLANAR
LittleFET
MICROCOUPLER
MicroFET
MicroPak
MICROWIRE
MSX
MSXPro
OCX
OCXPro
OPTOLOGIC
®
OPTOPLANAR
PACMAN
POP
Power247
PowerTrench
®
QFET
®
QS
QT Optoelectronics
Quiet Series
RapidConfigure
RapidConnect
SILENT SWITCHER
®
SMART START
SPM
Stealth
SuperSOT-3
SuperSOT-6
SuperSOT-8
SyncFET
TinyLogic
®
TINYOPTO
TruTranslation
UHC
UltraFET
®
VCX
Across the board. Around the world.
The Power Franchise
Programmable Active Droop
Datasheet Identification Product Status Definition
Advance Information Formative or In
Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary First Production This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete Not In Production This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.

HGTP12N60A4

Mfr. #:
Manufacturer:
ON Semiconductor / Fairchild
Description:
IGBT Transistors 600V N-Channel IGBT SMPS Series
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet