AD9985
Rev. 0 | Page 12 of 32
input is present. The offset then remains in place when other
signal levels are processed, and the entire signal is shifted to
eliminate offset errors.
In most PC graphics systems, black is transmitted between
active video lines. With CRT displays, when the electron beam
has completed writing a horizontal line on the screen (at the
right side), the beam is deflected quickly to the left side of the
screen (called horizontal retrace), and a black signal is provided
to prevent the beam from disturbing the image.
In systems with embedded sync, a blacker-than-black signal
(Hsync) is produced briefly to signal the CRT that it is time to
begin a retrace. For obvious reasons, it is important to avoid
clamping on the tip of Hsync. Fortunately, there is virtually
always a period following Hsync, called the back porch, where a
good black reference is provided. This is the time when
clamping should be done.
The clamp timing can be established by simply exercising the
CLAMP pin at the appropriate time (with External Clamp = 1).
The polarity of this signal is set by the clamp polarity bit.
A simpler method of clamp timing employs the AD9985
internal clamp timing generator. The clamp placement register
is programmed with the number of pixel times that should pass
after the trailing edge of HSYNC before clamping starts. A
second register (clamp duration) sets the duration of the clamp.
These are both 8-bit values, providing considerable flexibility in
clamp generation. The clamp timing is referenced to the trailing
edge of Hsync because, though Hsync duration can vary widely,
the back porch (black reference) always follows Hsync. A good
starting point for establishing clamping is to set the clamp
placement to 09H (providing 9 pixel periods for the graphics
signal to stabilize after sync) and set the clamp duration to 14H
(giving the clamp 20 pixel periods to reestablish the black
reference).
Clamping is accomplished by placing an appropriate charge on
the external input coupling capacitor. The value of this capacitor
affects the performance of the clamp. If it is too small, there will
be a significant amplitude change during a horizontal line time
(between clamping intervals). If the capacitor is too large, then
it will take excessively long for the clamp to recover from a large
change in incoming signal offset. The recommended value
(47 nF) results in recovering from a step error of 100 mV to
within 1/2 LSB in 10 lines with a clamp duration of 20 pixel
periods on a 60 Hz SXGA signal.
YUV Clamping
YUV graphic signals are slightly different from RGB signals in
that the dc reference level (black level in RGB signals) can be at
the midpoint of the graphics signal rather than at the bottom.
For these signals, it can be necessary to clamp to the midscale
range of the A/D converter range (80H) rather than at the
bottom of the A/D converter range (00H).
Clamping to midscale rather than to ground can be accom-
plished by setting the clamp select bits in the serial bus register.
Each of the three converters has its own selection bit so that
they can be clamped to either midscale or ground inde-
pendently. These bits are located in Register 10H and are
Bits 0–2. The midscale reference voltage that each A/D
converter clamps to is provided on the MIDSCV pin (Pin 37).
This pin should be bypassed to ground with a 0.1 µF capacitor,
even if midscale clamping is not required.
GAIN
1.0
0
00H FFH
INPUT RANGE (V)
0.5
OFFSET = 00H
OFFSET = 3FH
OFFSET = 7FH
OFFSET = 00H
OFFSET = 7FH
OFFSET = 3FH
04799-0-004
Figure 4. Gain and Offset Control
GAIN AND OFFSET CONTROL
The AD9985 can accommodate input signals with inputs
ranging from 0.5 V to 1.0 V full scale. The full-scale range is set
in three 8-bit registers (Red Gain, Green Gain, and Blue Gain).
Note that increasing the gain setting results in an image with less
contrast.
The offset control shifts the entire input range, resulting in a
change in image brightness. Three 7-bit registers (Red Offset,
Green Offset, Blue Offset) provide independent settings for
each channel. The offset controls provide a ±63 LSB adjustment
range. This range is connected with the full-scale range, so if the
input range is doubled (from 0.5 V to 1.0 V) then the offset step
size is also doubled (from 2 mV per step to 4 mV per step).
Figure 4 illustrates the interaction of gain and offset controls.
The magnitude of an LSB in offset adjustment is proportional to
the full-scale range, so changing the full-scale range also
changes the offset. The change is minimal if the offset setting is
near midscale. When changing the offset, the full-scale range is
not affected, but the full-scale level is shifted by the same
amount as the zero-scale level.
Auto Offset
In addition to the manual offset adjustment mode (via
Registers 0Bh to 0Dh), the AD9985 also includes circuitry to
automatically calibrate the offset for each channel. By
monitoring the output of each ADC during the back porch of
the input signals, the AD9985 can self-adjust to eliminate any
AD9985
Rev. 0 | Page 13 of 32
offset errors in its own ADC channels as well as any offset
errors present on the incoming graphics or video signals.
To activate the auto-offset mode, set Register 1Dh, Bit 7 to 1.
Next, the target code registers (19h through 1Bh) must be
programmed. The values programmed into the target code
registers should be the output code desired from the AD9985
during the back porch reference time. For example, for RGB
signals, all three registers would normally be programmed to
code 1, while for YPbPr signals the green (Y) channel would
normally be programmed to code 1 and the blue and red
channels (Pb and Pr) would normally be set to 128. Any target
code value between 1 and 254 can be set, although the AD9985’s
offset range may not be able to reach every value. Intended
target code values range from (but are not limited to) 1 to 40
when ground clamping and 90 to 170 when midscale clamping.
The ability to program a target code for each channel gives
users a large degree of freedom and flexibility. While in most
cases all channels will be set to either 1 or 128, the flexibility to
select other values allows for the possibility of inserting
intentional skews between channels. It also allows for the ADC
range to be skewed so that voltages outside of the normal range
can be digitized. (For example, setting the target code to 40
would allow the sync tip, which is normally below black level, to
be digitized and evaluated.)
Lastly, when in auto offset mode, the manual offset registers
(0Bh to 0Dh) have new functionality. The values in these
registers are digitally added to the value of the ADC output. The
purpose of doing this is to match a benefit that is present with
manual offset adjustment. Adjusting these registers is an easy
way to make brightness adjustments. Although some signal
range is lost with this method, it has proven to be a very popular
function. In order to be able to increase and decrease brightness,
the values in these registers in this mode are signed twos
complement. The digital adder is used only when in auto offset
mode. Although it cannot be disabled, setting the offset registers
to all 0’s will effectively disable it by always adding 0.
SYNC-ON-GREEN
The Sync-on-Green input operates in two steps. First, it sets a
baseline clamp level off of the incoming video signal with a
negative peak detector. Second, it sets the sync trigger level to a
programmable level (typically 150 mV) above the negative peak.
The Sync-on-Green input must be ac-coupled to the Green
analog input through its own capacitor, as shown in Figure 5.
The value of the capacitor must be 1 nF ±20%. If Sync-on-
Green is not used, this connection is not required. Note that the
Sync-on-Green signal is always negative polarity.
R
AIN
B
AIN
G
AIN
SOG
47nF
47nF
47nF
1nF
04799-0-005
Figure 5. Typical Clamp Configuration
CLOCK GENERATION
A phase-locked loop (PLL) is employed to generate the pixel
clock. In this PLL, the Hsync input provides a reference
frequency. A voltage controlled oscillator (VCO) generates a
much higher pixel clock frequency. This pixel clock is divided
by the PLL divide value (Registers 01H and 02H) and phase
compared with the Hsync input. Any error is used to shift the
VCO frequency and maintain lock between the two signals.
The stability of this clock is a very important element in
providing the clearest and most stable image. During each pixel
time, there is a period during which the signal is slewing from
the old pixel amplitude and settling at its new value. Then there
is a time when the input voltage is stable, before the signal must
slew to a new value (Figure 6). The ratio of the slewing time to
the stable time is a function of the bandwidth of the graphics
DAC and the bandwidth of the transmission system (cable and
termination). It is also a function of the overall pixel rate.
Clearly, if the dynamic characteristics of the system remain
fixed, the slewing and settling time is likewise fixed. This time
must be subtracted from the total pixel period, leaving the stable
period. At higher pixel frequencies, the total cycle time is
shorter, and the stable pixel time becomes shorter as well.
PIXEL CLOCK INVALID SAMPLE TIMES
04799-0-006
Figure 6. Pixel Sampling Times
Any jitter in the clock reduces the precision with which the
sampling time can be determined, and must also be subtracted
from the stable pixel time.
Considerable care has been taken in the design of the AD9985’s
clock generation circuit to minimize jitter. As indicated in
Figure 7, the clock jitter of the AD9985 is less than 5% of the
total pixel time in all operating modes, making the reduction in
the valid sampling time due to jitter negligible.
AD9985
Rev. 0 | Page 14 of 32
FREQUENCY (MHz)
14
12
0
0
PIXEL CLOCK JITTER (p-p) (%)
10
8
6
4
2
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
04799-0-007
Figure 7. Pixel Clock Jitter vs. Frequency
The PLL characteristics are determined by the loop filter design,
by the PLL charge pump current, and by the VCO range setting.
The loop filter design is illustrated in Figure 8. Recommended
settings of VCO range and charge pump current for VESA
standard display modes are listed in Table 9.
C
P
0.0082µF
C
Z
0.082µF
R
Z
2.7k
FILT
PV
D
04799-0-008
Figure 8. PLL Loop Filter Detail
Four programmable registers are provided to optimize the
performance of the PLL:
1. The 12-Bit Divisor Register. The input Hsync frequencies
range from 15 kHz to 110 kHz. The PLL multiplies the
frequency of the Hsync signal, producing pixel clock
frequencies in the range of 12 MHz to 110 MHz. The
Divisor register controls the exact multiplication factor.
This register may be set to any value between 221 and 4095.
(The divide ratio that is actually used is the programmed
divide ratio plus one.)
2. The 2-Bit VCO Range Register. To improve the noise
performance of the AD9985, the VCO operating frequency
range is divided into three overlapping regions. The VCO
range register sets this operating range. Table 6 lists the
frequency ranges for the lowest and highest regions.
Table 6. VCO Frequency Ranges
Pixel Clock Range (MHz)
PV1 PV0 AD9985KSTZ AD9985BSTZ
0 0 12–32 12–30
0 1 32–64 30–60
1 0 64–110 60–110
1 1 110–140
3. The 3-Bit Charge Pump Current Register. This register
allows the current that drives the low-pass loop filter to be
varied. The possible current values are listed in Table 7.
Table 7. Charge Pump Current/Control Bits
Ip2 Ip1 Ip0 Current (µA)
0 0 0 50
0 0 1 100
0 1 0 150
0 1 1 250
1 0 0 350
1 0 1 500
1 1 0 750
1 1 1 1500
4. The 5-Bit Phase Adjust Register. The phase of the gen-
erated sampling clock may be shifted to locate an optimum
sampling point within a clock cycle. The phase adjust
register provides 32 phase-shift steps of 11.25° each. The
Hsync signal with an identical phase shift is available
through the HSOUT pin.
The COAST pin is used to allow the PLL to continue to
run at the same frequency, in the absence of the incoming
Hsync signal or during disturbances in Hsync (such as
equalization pulses). This may be used during the vertical
sync period, or any other time that the Hsync signal is
unavailable. The polarity of the COAST signal may be set
through the coast polarity register. Also, the polarity of the
Hsync signal may be set through the Hsync polarity
register. If not using automatic polarity detection, the
Hsync and COAST polarity bits should be set to match the
respective polarities of the input signals.
POWER MANAGEMENT
The AD9985 uses the activity detect circuits, the active interface
bits in the serial bus, the active interface override bits, and the
power-down bit to determine the correct power state. There are
three power states—full-power, seek mode, and power-down.
Table 8 summarizes how the AD9985 determines what power
mode to be in and which circuitry is powered on/off in each of
these modes. The power-down command has priority over the
automatic circuitry.
Table 8. Power-Down Mode Descriptions
Mode
Inputs
Power-Down
1
Sync
Detect
2
Powered On or
Comments
Full-
Power
1 1 Everything
Seek
Mode
1 0
Serial Bus, Sync
Activity Detect, SOG,
Band Gap Reference
Power-
Down
0 X
Serial Bus, Sync
Activity Detect, SOG,
Band Gap Reference
1
Power-down is controlled via Bit 1 in serial bus Register 0FH.
2
Sync detect is determined by OR’ing Bits 7, 4, and 1 in serial bus
Register 14H.

AD9985ABSTZ-110

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Display Interface IC b-free8-bit analog intrfce; added filte
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union