–3–REV. 0
AD7894
Parameter A Versions
l
B Versions
1
Units Test Conditions/Comments
POWER REQUIREMENTS
V
DD
+5 +5 V nom ±5% for Specified Performance
I
DD
5.5 5.5 mA max Digital Inputs @ V
DD
, V
DD
= 5 V ± 5%
Power Dissipation 27.5 27.5 mW max Typically 20 mW
Power-Down Mode
I
DD
@ T
MIN
to T
MAX
20 20 µA max Digital Inputs @ GND, V
DD
= 5 V ± 5%
Power Dissipation T
MIN
to T
MAX
100 100 µW max
Typ 15 µW
NOTES
1
Temperature ranges are as follows: A, B Versions: –40°C to +85°C.
2
Applies to Mode 1 operation. See Operating Modes section.
3
See Terminology.
4
Sample tested @ +25°C to ensure compliance.
5
This 10 µs includes the “wake-up” time from standby. This “wake-up” time is timed from the rising edge of CONVST, whereas conversion is timed from the falling
edge of CONVST, for narrow CONVST pulsewidth the conversion time is effectively the “wake-up” time plus conversion time, hence 10 µs. This can be seen from
Figure 3. Note that if the CONVST pulsewidth is greater than 5 µs, the effective conversion time will increase beyond 10 µs.
Specifications subject to change without notice.
TIMING CHARACTERISTICS
1, 2
Parameter A, B Versions Units Test Conditions/Comments
t
1
40 ns min CONVST Pulsewidth
t
2
31.25
2
ns min SCLK High Pulsewidth
t
3
31.25
2
ns min SCLK Low Pulsewidth
t
4
60
3
ns max Data Access Time after Falling Edge of SCLK
V
DD
= 5 V ± 5%
t
5
10 ns min Data Hold Time after Falling Edge of SCLK
t
6
20
4
ns max Bus Relinquish Time after Falling Edge of SCLK
NOTES
1
Sample tested at +25°C to ensure compliance. All input signals are measured with tr = tf = 1 ns (10% to 90% of +5 V) and timed from a voltage level of +1.6 V.
2
The SCLK maximum frequency is 16 MHz. Care must be taken when interfacing to account for the data access time, t
4
, and the setup time required for the user’s
processor. These two times will determine the maximum SCLK frequency with which the user’s system can operate. See Serial Interface section for more information.
3
Measured with the load circuit of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.0 V.
4
Derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then extrapolated back
to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, t
6
, quoted in the timing characteristics is the true bus relinquish time
of the part and as such is independent of external bus loading capacitances.
Specifications subject to change without notice.
(V
DD
= +5 V 5%, GND = 0 V, REF IN = +2.5 V)
ABSOLUTE MAXIMUM RATINGS*
(T
A
= +25°C unless otherwise noted)
V
DD
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3␣ V to +7 V
Analog Input Voltage to GND
␣ ␣ AD7894-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±17 V
␣ ␣ AD7894-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±7 V
␣ ␣ AD7894-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . –5 V to +10 V
Reference Input Voltage to GND . . . . –0.3 V to V
DD
+ 0.3 V
Digital Input Voltage to GND . . . . . . . –0.3 V to V
DD
+ 0.3 V
Digital Output Voltage to GND . . . . . –0.3 V to V
DD
+ 0.3 V
Operating Temperature Range
␣ ␣ Commercial (A, B Versions) . . . . . . . . . . . –40°C to +85°C
␣ ␣ Storage Temperature Range . . . . . . . . . . . –65°C to +150°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . +150°C
SOIC Package, Power Dissipation . . . . . . . . . . . . . . . 450 mW
␣␣θ
JA
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 170°C/W
Lead Temperature, Soldering
␣␣␣␣Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . +215°C
␣␣␣␣Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . .+220°C
*Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the AD7894 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
AD7894
–4–
REV. 0
ORDERING GUIDE
Temperature Package Package
Model Range INL Input Range SNR Description Option
AD7894AR-10 –40°C to +85°C ±2 LSB ±10 V 77 dB 8-Lead Narrow Body SOIC SO-8
AD7894BR-10 –40°C to +85°C ±1.5 LSB ±10 V 77 dB 8-Lead Narrow Body SOIC SO-8
AD7894AR-3 –40°C to +85°C ±2 LSB ±2.5 V 77 dB 8-Lead Narrow Body SOIC SO-8
AD7894BR-3 –40°C to +85°C ±1.5 LSB ±2.5 V 77 dB 8-Lead Narrow Body SOIC SO-8
AD7894AR-2 –40°C to +85°C ±2 LSB 0 V to +2.5 V 77 dB 8-Lead Narrow Body SOIC SO-8
PIN FUNCTION DESCRIPTIONS
Pin Pin
No. Mnemonic Description
1 REF IN Voltage Reference Input. An external reference source should be connected to this pin to provide the
reference voltage for the AD7894’s conversion process. The REF IN input is buffered on-chip. The
nominal reference voltage for correct operation of the AD7894 is +2.5␣ V.
2V
IN
Analog Input Channel. The analog input range is ±10 V (AD7894-10), ±2.5 V (AD7894-3) and 0 V to
+2.5␣ V (AD7894-2).
3 GND Analog Ground. Ground reference for track/hold, comparator, digital circuitry and DAC.
4 SCLK Serial Clock Input. An external serial clock is applied to this input to obtain serial data from the AD7894.
A new serial data bit is clocked out on the falling edge of this serial clock. Data is guaranteed valid for
10 ns after this falling edge so data can be accepted on the falling edge when a fast serial clock is used.
The serial clock input should be taken low at the end of the serial data transmission.
5 SDATA Serial Data Output. Serial data from the AD7894 is provided at this output. The serial data is clocked
out by the falling edge of SCLK, but the data can also be read on the falling edge of SCLK. This is pos-
sible because data bit N is valid for a specified time after the falling edge of SCLK (data hold time) (see
Figure 5). Sixteen bits of serial data are provided as two leading zeroes followed by the 14 bits of conver-
sion data. On the 16th falling edge of SCLK, the SDATA line is held for the data hold time and then
disabled (three-stated). Output data coding is twos complement for the AD7894-10 and AD7894-3, and
straight binary for the AD7894-2.
6 BUSY The BUSY pin is used to indicate when the part is doing a conversion. The BUSY pin will go high on
the falling edge of CONVST and will return low when the conversion is complete.
7 CONVST Conversion Start. Edge-triggered logic input. On the falling edge of this input, the track/hold goes into its
hold mode and conversion is initiated. If CONVST is low at the end of conversion, the part goes into
power-down mode. In this case, the rising edge of CONVST will cause the part to begin waking up.
8V
DD
Positive supply voltage, +5 V ± 5%.
1.6mA
400mA
+1.6V
TO
OUTPUT
PIN
50pF
Figure 1. Load Circuit for Access Time and Bus
Relinquish Time
PIN CONFIGURATION
SOIC (SO-8)
TOP VIEW
(Not to Scale)
8
7
6
5
1
2
3
4
REF IN
V
IN
GND
V
DD
CONVST
BUSY
SDATASCLK
AD7894
AD7894
–5–REV. 0
TERMINOLOGY
Signal to (Noise + Distortion) Ratio
This is the measured ratio of signal to (noise + distortion) at the
output of the A/D converter. The signal is the rms amplitude of
the fundamental. Noise is the rms sum of all nonfundamental
signals up to half the sampling frequency (f
S
/2), excluding dc.
The ratio is dependent upon the number of quantization levels
in the digitization process; the more levels, the smaller the quan-
tization noise. The theoretical signal to (noise + distortion) ratio
for an ideal N-bit converter with a sine wave input is given by:
Signal to (Noise + Distortion) = (6.02␣ N + 1.76) dB
Thus for a 14-bit converter, this is 86.04 dB.
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the rms sum of
harmonics to the fundamental. For the AD7894, it is defined as:
THD dB
VVVVV
V
( ) log=
++++
20
2
2
3
2
4
2
5
2
6
2
1
where V
1
is the rms amplitude of the fundamental and V
2
, V
3
,
V
4
, V
5
and V
6
are the rms amplitudes of the second through the
sixth harmonics.
Peak Harmonic or Spurious Noise
Peak harmonic or spurious noise is defined as the ratio of the
rms value of the next largest component in the ADC output
spectrum (up to f
S
/2 and excluding dc) to the rms value of the
fundamental. The value of this specification is normally deter-
mined by the largest harmonic in the spectrum, but for parts
where the harmonics are buried in the noise floor, it will be a
noise peak.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fa and
fb, any active device with nonlinearities will create distortion
products at sum and difference frequencies of mfa ± nfb where
m, n = 0, 1, 2, 3, etc. Intermodulation terms are those for which
neither m nor n is equal to zero. For example, the second order
terms include (fa + fb) and (fa – fb), while the third order terms
include (2 fa + fb), (2 fa – fb), (fa + 2 fb) and (fa – 2 fb).
The AD7894 is tested using two input frequencies. In this case,
the second and third order terms are of different significance.
The second order terms are usually distanced in frequency from
the original sine waves, while the third order terms are usually at
a frequency close to the input frequencies. As a result, the second
and third order terms are specified separately. The calculation
of the intermodulation distortion is as per the THD specification
where it is the ratio of the rms sum of the individual distortion
products to the rms amplitude of the fundamental expressed
in dBs.
Relative Accuracy
Relative accuracy or endpoint nonlinearity is the maximum
deviation from a straight line passing through the endpoints of
the ADC transfer function.
Differential Nonlinearity
This is the difference between the measured and the ideal 1␣ LSB
change between any two adjacent codes in the ADC.
Positive Gain Error (AD7894-10)
This is the deviation of the last code transition (01 . . . 110 to
01 . . . 111) from the ideal (4 × VREF – 1 LSB) after the
Bipolar Zero Error has been adjusted out.
Positive Gain Error (AD7894-3)
This is the deviation of the last code transition (01 . . . 110 to
01 . . . 111) from the ideal (VREF – 1 LSB) after the Bipolar
Zero Error has been adjusted out.
Positive Gain Error (AD7894-2)
This is the deviation of the last code transition (11 . . . 110 to
11 . . . 111) from the ideal (VREF – 1 LSB) after the Unipolar
Offset Error has been adjusted out.
Bipolar Zero Error (AD7894-10, AD7894-3)
This is the deviation of the midscale transition (all 0s to all 1s)
from the ideal 0 V (GND).
Unipolar Offset Error (AD7894-2)
This is the deviation of the first code transition (00 . . . 000 to
00 . . . 001) from the ideal 1 LSB.
Negative Gain Error (AD7894-10)
This is the deviation of the first code transition (10 . . . 000 to
10 . . . 001) from the ideal (–4 × VREF + 1 LSB) after Bipolar
Zero Error has been adjusted out.
Negative Gain Error (AD7894-3)
This is the deviation of the first code transition (10 . . . 000 to
10 . . . 001) from the ideal (– VREF + 1 LSB) after Bipolar
Zero Error has been adjusted out.
Track/Hold Acquisition Time
Track/Hold acquisition time is the time required for the output
of the track/hold amplifier to reach its final value, within
±1/2␣ LSB, after the end of conversion (the point at which the
track/hold returns to track mode). It also applies to situations
where there is a step input change on the input voltage applied
to the V
IN
input of the AD7894. This means that the user must
wait for the duration of the track/hold acquisition time after the
end of conversion or after a step input change to V
IN
before
starting another conversion, to ensure that the part operates to
specification.

AD7894BRZ-10

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC Bipolar Input 5V 14B Serial 4.5uS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union