LPC2364_65_66_67_68 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 7.1 — 16 October 2013 34 of 69
NXP Semiconductors
LPC2364/65/66/67/68
Single-chip 16-bit/32-bit microcontrollers
On the wake-up of Sleep mode, if the IRC was used before entering Sleep mode, the
code execution and peripherals activities will resume after 4 cycles expire. If the main
external oscillator was used, the code execution will resume when 4096 cycles expire.
The customers need to reconfigure the PLL and clock dividers accordingly.
7.24.4.3 Power-down mode
Power-down mode does everything that Sleep mode does, but also turns off the IRC
oscillator and the flash memory. This saves more power, but requires waiting for
resumption of flash operation before execution of code or data access in the flash memory
can be accomplished.
On the wake-up of Power-down mode, if the IRC was used before entering Power-down
mode, it will take IRC 60 s to start-up. After this 4 IRC cycles will expire before the code
execution can then be resumed if the code was running from SRAM. In the meantime, the
flash wake-up timer then counts 4 MHz IRC clock cycles to make the 100 s flash start-up
time. When it times out, access to the flash will be allowed. The customers need to
reconfigure the PLL and clock dividers accordingly.
7.24.4.4 Deep power-down mode
Deep power-down mode is similar to the Power-down mode, but now the on-chip
regulator that supplies power to the internal logic is also shut off. This produces the lowest
possible power consumption without removing power from the entire chip. Since the Deep
power-down mode shuts down the on-chip logic power supply, there is no register or
memory retention, and resumption of operation involves the same activities as a full chip
reset.
If power is supplied to the LPC2364/65/66/67/68 during Deep power-down mode,
wake-up can be caused by the RTC Alarm interrupt or by external Reset.
While in Deep power-down mode, external device power may be removed. In this case,
the LPC2364/65/66/67/68 will start up when external power is restored.
Essential data may be retained through Deep power-down mode (or through complete
powering off of the chip) by storing data in the Battery RAM, as long as the external power
to the VBAT pin is maintained.
7.24.4.5 Power domains
The LPC2364/65/66/67/68 provides two independent power domains that allow the bulk
of the device to have power removed while maintaining operation of the RTC and the
battery RAM.
On the LPC2364/65/66/67/68, I/O pads are powered by the 3.3 V (V
DD(3V3)
) pins, while
the V
DD(DCDC)(3V3)
pin powers the on-chip DC-to-DC converter which in turn provides
power to the CPU and most of the peripherals.
Depending on the LPC2364/65/66/67/68 application, a design can use two power options
to manage power consumption.
LPC2364_65_66_67_68 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 7.1 — 16 October 2013 35 of 69
NXP Semiconductors
LPC2364/65/66/67/68
Single-chip 16-bit/32-bit microcontrollers
The first option assumes that power consumption is not a concern and the design ties the
V
DD(3V3)
and V
DD(DCDC)(3V3)
pins together. This approach requires only one 3.3 V power
supply for both pads, the CPU, and peripherals. While this solution is simple, it does not
support powering down the I/O pad ring “on the fly” while keeping the CPU and
peripherals alive.
The second option uses two power supplies; a 3.3 V supply for the I/O pads (V
DD(3V3)
) and
a dedicated 3.3 V supply for the CPU (V
DD(DCDC)(3V3)
). Having the on-chip DC-to-DC
converter powered independently from the I/O pad ring enables shutting down of the I/O
pad power supply “on the fly”, while the CPU and peripherals stay active.
The VBAT pin supplies power only to the RTC and the battery RAM. These two functions
require a minimum of power to operate, which can be supplied by an external battery.
When the CPU and the rest of chip functions are stopped and power removed, the RTC
can supply an alarm output that may be used by external hardware to restore chip power
and resume operation.
7.25 System control
7.25.1 Reset
Reset has four sources on the LPC2364/65/66/67/68: the RESET pin, the Watchdog
reset, power-on reset, and the BrownOut Detection (BOD) circuit. The RESET
pin is a
Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating
voltage attains a usable level, starts the Wake-up timer (see description in Section 7.24.3
Wake-up timer), causing reset to remain asserted until the external Reset is
de-asserted, the oscillator is running, a fixed number of clocks have passed, and the flash
controller has completed its initialization.
When the internal Reset is removed, the processor begins executing at address 0, which
is initially the Reset vector mapped from the Boot Block. At that point, all of the processor
and peripheral registers have been initialized to predetermined values.
7.25.2 Brownout detection
The LPC2364/65/66/67/68 includes 2-stage monitoring of the voltage on the
V
DD(DCDC)(3V3)
pins. If this voltage falls below 2.95 V, the BOD asserts an interrupt signal
to the Vectored Interrupt Controller. This signal can be enabled for interrupt in the Interrupt
Enable Register in the VIC in order to cause a CPU interrupt; if not, software can monitor
the signal by reading a dedicated status register.
The second stage of low-voltage detection asserts Reset to inactivate the
LPC2364/65/66/67/68 when the voltage on the V
DD(DCDC)(3V3)
pins falls below 2.65 V. This
Reset prevents alteration of the flash as operation of the various elements of the chip
would otherwise become unreliable due to low voltage. The BOD circuit maintains this
reset down below 1 V, at which point the power-on reset circuitry maintains the overall
Reset.
Both the 2.95 V and 2.65 V thresholds include some hysteresis. In normal operation, this
hysteresis allows the 2.95 V detection to reliably interrupt, or a regularly executed event
loop to sense the condition.
LPC2364_65_66_67_68 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 7.1 — 16 October 2013 36 of 69
NXP Semiconductors
LPC2364/65/66/67/68
Single-chip 16-bit/32-bit microcontrollers
7.25.3 Code security (Code Read Protection - CRP)
This feature of the LPC2364/65/66/67/68 allows user to enable different levels of security
in the system so that access to the on-chip flash and use of the JTAG and ISP can be
restricted. When needed, CRP is invoked by programming a specific pattern into a
dedicated flash location. IAP commands are not affected by the CRP.
There are three levels of the Code Read Protection.
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is
required and flash field updates are needed but all sectors can not be erased.
CRP2 disables access to chip via the JTAG and only allows full flash erase and update
using a reduced set of the ISP commands.
Running an application with level CRP3 selected fully disables any access to chip via the
JTAG pins and the ISP. This mode effectively disables ISP override using P2[10] pin, too.
It is up to the user’s application to provide (if needed) flash update mechanism using IAP
calls or call reinvoke ISP command to enable flash update via UART0.
7.25.4 AHB
The LPC2364/65/66/67/68 implement two AHBs in order to allow the Ethernet block to
operate without interference caused by other system activity. The primary AHB, referred
to as AHB1, includes the Vectored Interrupt Controller, GPDMA controller, USB interface,
and 8 kB SRAM primarily intended for use by the USB. The USB interface is available on
LPC2364/66/68 only.
The second AHB, referred to as AHB2, includes only the Ethernet block and an
associated 16 kB SRAM. In addition, a bus bridge is provided that allows the secondary
AHB to be a bus master on AHB1, allowing expansion of Ethernet buffer space into
unused space in memory residing on AHB1.
In summary, bus masters with access to AHB1 are the ARM7 itself, the USB block, the
GPDMA function, and the Ethernet block (via the bus bridge from AHB2). Bus masters
with access to AHB2 are the ARM7 and the Ethernet block.
7.25.5 External interrupt inputs
The LPC2364/65/66/67/68 include up to 46 edge sensitive interrupt inputs combined with
up to four level sensitive external interrupt inputs as selectable pin functions. The external
interrupt inputs can optionally be used to wake up the processor from Power-down mode.
CAUTION
If level three Code Read Protection (CRP3) is selected, no future factory testing can be
performed on the device.

LPC2368FET100,518

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
ARM Microcontrollers - MCU 16/32 bit micro
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union