LTC5551
10
5551fa
For more information www.linear.com/LTC5551
Input P1dB vs RF Frequency
850MHz Conversion Gain, IIP3
and NF vs LO Power
Conversion Gain, IIP3, P1dB
and NF vs Supply Voltage
Conversion Gain, IIP3 and SSB
NF vs Temperature LO Leakage and RF Isolation
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
Conversion Gain, IIP3 and NF
vs RF Frequency (Low Side LO)
Conversion Gain, IIP3 and NF
vs RF Frequency (High Side LO)
Conversion Gain, IIP3 and NF
vs RF Frequency
500MHz to 1100MHz application.
V
CC
= 3.3V, EN = High, ISEL = Low, T
C
= 25°C, P
LO
= 0dBm, P
RF
= 0dBm (0dBm/tone for two-tone IIP3 tests, f = 2MHz),
IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1.
Typical ac perForMance characTerisTics
RF FREQUENCY (MHz)
500
0
IIP3 (dBm), NF (dB), G
C
(dB)
39
36
5551 G42
21
24
27
30
33
18
15
12
9
6
3
1100600 700 800 1000900
G
C
NF
85°C
25°C
–40°C
IIP3
RF FREQUENCY (MHz)
500
0
IIP3 (dBm), NF (dB), G
C
(dB)
36
5551 G43
21
24
27
30
33
18
15
12
9
6
3
1100600 700 800 1000900
G
C
85°C
25°C
–40°C
NF
IIP3
RF FREQUENCY (MHz)
500
10
INPUT P1dB (dBm)
11
14
15
12
13
20
17
16
18
19
5551 G45
1100700600 800 900 1000
LOW POWER MODE
NORMAL POWER MODE
LOW SIDE LO
HIGH SIDE LO
LO INPUT POWER (dBm)
–6
8
NF (dB), IIP3 (dBm)
G
C
(dB)
11
14
17
38
23
20
26
29
32
35
0
1
2
3
5
4
5551 G46
6
–4 –2 0 2 4
G
C
NF
IIP3
LOW SIDE LO
HIGH SIDE LO
RF = 850MHz
CASE TEMPERATURE (°C)
–40
0
IIP3 (dBm), NF (dB), G
C
(dB)
3
6
9
39
36
15
12
18
21
24
27
30
33
5551 G48
110–25 –10 5 65 80 9520 5035
G
C
NF
IIP3
LOW SIDE LO
HIGH SIDE LO
RF = 850MHz
LO/RF FREQUENCY (MHz)
500
–40
LO LEAKAGE (dBm)
RF ISOLATION (dB)
–10
0
–30
–20
0
60
80
20
40
600 700
5551 G49
1100800 900 1000
LO-RF
LO-IF
RF-IF
RF-LO
RF INPUT POWER (dBm/TONE)
–10
–90
–80
OUTPUT POWER/TONE (dBm)
–70
–60
–50
–40
–30
–20
–10
20
–7
5551 G50
10
0
17–4 –1 2 5 8 11 14
IM5
IM3
IF
OUT
RF1 = 849MHz
RF2 = 851MHz
LO = 1003MHz
LO INPUT POWER (dBm)
–6
8
NF (dB), IIP3 (dBm)
G
C
(dB)
11
14
17
38
23
20
26
29
32
35
0
1
2
3
5
4
5551 G46
6–4 –2 0 2 4
G
C
NF
IIP3
LOW SIDE LO
HIGH SIDE LO
RF = 850MHz
V
CC
SUPPLY VOLTAGE (V)
2.5
8
IIP3 (dBm), P1dB (dBm), NF (dB)
G
C
(dB)
11
14
17
38
23
20
26
29
32
35
0
1
2
3
5
4
5551 G47
3.62.6 2.7 2.8 3.2 3.3 3.4 3.52.9 3.13.0
NF
P1dB
G
C
IIP3
LOW SIDE LO
HIGH SIDE LO
RF = 850MHz
RF FREQUENCY (MHz)
500
7
IIP3 (dBm), NF (dB)
G
C
(dB)
10
28
31
16
13
19
22
25
0
8
1
2
3
4
5
6
7
600 700 800
5551 G44
11001000900
IIP3
NF
G
C
LOW POWER MODE
ISEL = HIGH
LOW SIDE LO
HIGH SIDE LO
LTC5551
11
5551fa
For more information www.linear.com/LTC5551
Input P1dB vs RF Frequency
2.7GHz Conversion Gain, IIP3 and
NF vs LO Power
Conversion Gain, IIP3, P1dB
and NF vs Supply Voltage
2-Tone IF Output Power, IM3 and
IM5 vs RF Input PowerLO Leakage and RF Isolation
Conversion Gain, IIP3 and SSB
NF vs Temperature
Conversion Gain, IIP3 and NF vs
RF Frequency (Low Side LO)
Conversion Gain, IIP3 and NF
vs RF Frequency (High Side LO)
Conversion Gain, IIP3 and NF
vs RF Frequency
2300MHz to 3500MHz application.
V
CC
= 3.3V, EN = High, ISEL = Low, T
C
= 25°C, P
LO
= 0dBm, P
RF
= 0dBm (0dBm/tone for two-tone IIP3 tests, f = 2MHz),
IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1.
Typical ac perForMance characTerisTics
RF FREQUENCY (GHz)
2.3
–1
IIP3 (dBm), NF (dB), G
C
(dB)
39
5551 G51
23
27
31
35
19
15
11
7
3
3.52.5 2.7 2.9 3.33.1
NF
G
C
85°C
25°C
–40°C
IIP3
RF FREQUENCY (GHz)
2.3
0
IIP3 (dBm), NF (dB), G
C
(dB)
36
5551 G52
21
24
27
30
33
18
15
12
9
6
3
3.32.5 2.7 2.9 3.1
G
C
NF
IIP3
85°C
25°C
–40°C
RF FREQUENCY (GHz)
2.3
7
IIP3 (dBm), NF (dB)
G
C
(dB)
10
28
31
16
13
19
22
25
–3
5
–2
–1
0
1
2
3
4
2.5 2.7 2.9
5551 G53
3.53.33.1
IIP3
NF
G
C
LOW POWER MODE
ISEL = HIGH
LOW SIDE LO
HIGH SIDE LO
RF FREQUENCY (GHz)
2.3
10
INPUT P1dB (dBm)
11
14
15
12
13
20
17
16
18
19
5551 G54
3.52.72.5 2.9 3.1 3.3
LOW POWER MODE
NORMAL POWER MODE
LOW SIDE LO
HIGH SIDE LO
LO INPUT POWER (dBm)
–6
9
NF (dB), IIP3 (dBm)
G
C
(dB)
12
15
18
39
24
21
27
30
33
36
0
1
2
3
5
4
5551 G55
6–4 –2 0 2 4
NF
G
C
IIP3
LOW SIDE LO
HIGH SIDE LO
RF = 2.7GHz
V
CC
SUPPLY VOLTAGE (V)
2.5
9
IIP3 (dBm), P1dB (dBm), NF (dB)
G
C
(dB)
12
15
18
39
24
21
27
30
33
36
–1
0
1
2
4
3
5551 G56
3.62.6 2.7 2.8 3.2 3.3 3.4 3.52.9 3.13.0
NF
P1dB
G
C
IIP3
LOW SIDE LO
HIGH SIDE LO
RF = 2.7GHz
CASE TEMPERATURE (°C)
–40
0
IIP3 (dBm), NF (dB), G
C
(dB)
3
6
9
39
36
15
12
18
21
24
27
30
33
5551 G57
110–25 –10 5 65 80 9520 5035
G
C
NF
IIP3
LOW SIDE LO
HIGH SIDE LO
RF = 2700MHz
LO/RF FREQUENCY (GHz)
2.3
–50
LO LEAKAGE (dBm)
RF ISOLATION (dB)
–10
0
–40
–30
–20
0
60
75
15
30
45
2.5 2.7
5551 G58
3.52.9 3.1 3.3
LO-RF
LO-IF
RF-LO
RF-IF
RF INPUT POWER (dBm/TONE)
–8
–90
–80
OUTPUT POWER/TONE (dBm)
–70
–60
–50
–40
–30
–20
–10
20
5551 G59
10
0
16–5 –2 1 4 7 10 13
IM3
IM5
IF
OUT
RF1 = 2699MHz
RF2 = 2701MHz
LO = 2547MHz
LTC5551
12
5551fa
For more information www.linear.com/LTC5551
pin FuncTions
TP (Pin 1): Test Point. It is used for manufacture measure-
ment only. It is recommended to be connected to ground.
RF
(Pin 2): Single-Ended Input for the RF Signal. This pin
is internally connected to the primary side of the RF input
transformer, which has low DC resistance to ground. A
series DC-blocking capacitor should be used to avoid
damage to the integrated transformer when DC voltage
is present at the RF input. The RF input impedance is
matched under the condition that the LO input is driven
with a 0dBm ±6dB source between 0.2GHz and 3.5GHz.
CT (Pin 3): RF Transformer Secondary Center-Tap. This
pin must be connected to ground with minimum parasitic
resistance and inductance to complete the Mixer’s DC
current path. Typical DC current is 80mA with LO disabled
and 134mA when LO signal is applied.
GND (Pins 4, 9, 11, 13, Exposed Pad Pin 17): Ground.
These pins must be soldered to the RF ground plane on
the circuit board. The exposed pad metal of the package
provides both electrical contact to ground and good thermal
contact to the printed circuit board.
EN (Pin 5): Enable Pin. When the input voltage is greater
than 1.2V, the mixer
is enabled. When the input voltage is
less
than 0.3V or left open, the mixer is disabled. Typical
input current is less than 30μA. This pin has an internal
pull-down resistor.
V
CC
(Pins 6, 7): Power Supply Pins. These pins are in-
ternally connected
and must be externally connected to
block DiagraM
a regulated 2.5V to 3.6V supply, with bypass capacitors
located close to the pin. Typical current consumption is
70mA through these pins.
ISEL (Pin 8): Low Power Select Pin. When this pin is pulled
low (<0.3V) or left open, the mixer is biased at the normal
current level for best RF performance. When greater than
1.2V is applied, the mixer operates at reduced current mode,
which provides reasonable performance at lower power
consumption. This pin has an internal pull-down resistor.
LO (Pin 10): Single-Ended Input for the Local Oscillator.
This pin is internally connected to the primary side of the
RF input transformer, which has low DC resistance to
ground. A series DC blocking capacitor should be used
to avoid damage to the integrated transformer when DC
voltage is present at the LO input.
TEMP (Pin 12): Temperature Sensing Diode. This pin is
connected to the anode of a diode that may be used to
measure the die temperature, by forcing a current and
measuring the voltage.
IF
(Pin 14) and IF
+
(Pin 15): Open-Collector Differential
Outputs for the IF Amplifier. These pins must be connected
to a DC supply through impedance matching inductors, or
a transformer center-tap.
Typical DC current consumption
is 67mA into each pin.
IFBIAS (Pin 16): This Pin Allows Adjustment of the IF
Amplifier Current. Typical DC voltage is 2.1V. This pin
should be left floating for optimum performance.
RF
CT
V
CC
V
CC
GND PINS ARE NOT SHOWN
LO
ISEL
TEMP
IF
+
IFBIAS IF
EXPOSED
PAD
5551 BD
IF
AMP
12
10
141516
6
EN
5
2
3
7
6
17
LO
AMP
BIAS

LTC5551IUF#PBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
RF Mixer 300MHz - 3.5GHz Ultra-High Dynamic Range Downconverting Mixer
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet