19
LTC1709-7
Why should you defeat current latchoff? During the
prototyping stage of a design, there may be a problem with
noise pickup or poor layout causing the protection circuit
to latch off the controller. Defeating this feature allows
troubleshooting of the circuit and PC layout. The internal
short-circuit and foldback current limiting still remains
active, thereby protecting the power supply system from
failure. A decision can be made after the design is com-
plete whether to rely solely on foldback current limiting or
to enable the latchoff feature by removing the pull-up
resistor.
The value of the soft-start capacitor C
SS
may need to be
scaled with output voltage, output capacitance and load
current characteristics. The minimum soft-start capaci-
tance is given by:
C
SS
> (C
OUT
)(V
OUT
)(10
-4
)(R
SENSE
)
The minimum recommended soft-start capacitor of C
SS
=
0.1µF will be sufficient for most applications.
Phase-Locked Loop and Frequency Synchronization
The LTC1709-7 has a phase-locked loop comprised of an
internal voltage controlled oscillator and phase detector.
This allows the top MOSFET turn-on to be locked to the
rising edge of an external source. The frequency range of
the voltage controlled oscillator is ±50% around the
center frequency f
O
. A voltage applied to the PLLFLTR pin
of 1.2V corresponds to a frequency of approximately
220kHz. The nominal operating frequency range of the
LTC1709-7 is 140kHz to 310kHz.
The phase detector used is an edge sensitive digital type
which provides zero degrees phase shift between the
external and internal oscillators. This type of phase detec-
tor will not lock up on input frequencies close to the
harmonics of the VCO center frequency. The PLL hold-in
range, f
H
, is equal to the capture range, f
C:
f
H
= f
C
= ±0.5 f
O
(150kHz-300kHz)
The output of the phase detector is a complementary pair
of current sources charging or discharging the external
filter network on the PLLFLTR pin. A simplified block
diagram is shown in Figure 7.
APPLICATIO S I FOR ATIO
WUU
U
Fault Conditions: Overcurrent Latchoff
The RUN/SS pin also provides the ability to latch off the
controllers when an overcurrent condition is detected. The
RUN/SS capacitor, C
SS
, is used initially to limit the inrush
current of both controllers. After the controllers have been
started and been given adequate time to charge up the
output capacitors and provide full load current, the RUN/
SS capacitor is used for a short-circuit timer. If the output
voltage falls to less than 70% of its nominal value after C
SS
reaches 4.1V, C
SS
begins discharging on the assumption
that the output is in an overcurrent condition. If the
condition lasts for a long enough period as determined by
the size of the C
SS
, the controller will be shut down until the
RUN/SS pin voltage is recycled. If the overload occurs
during start-up, the time can be approximated by:
t
LO1
(C
SS
• 0.6V)/(1.2µA) = 5 • 10
5
(C
SS
)
If the overload occurs after start-up, the voltage on C
SS
will
continue charging and will provide additional time before
latching off:
t
LO2
(C
SS
• 3V)/(1.2µA) = 2.5 • 10
6
(C
SS
)
This built-in overcurrent latchoff can be overridden by
providing a pull-up resistor, R
SS
, to the RUN/SS pin as
shown in Figure 6. This resistance shortens the soft-start
period and prevents the discharge of the RUN/SS capaci-
tor during a severe overcurrent and/or short-circuit con-
dition. When deriving the 5µA current from V
IN
as in the
figure, current latchoff is always defeated. The diode
connecting this pull-up resistor to INTV
CC
, as in Figure␣ 6,
eliminates any extra supply current during shutdown
while eliminating the INTV
CC
loading from preventing
controller start-up.
Figure 6. RUN/SS Pin Interfacing
3.3V OR 5V RUN/SS
V
IN
INTV
CC
RUN/SS
D1
D1*
C
SS
R
SS
*
C
SS
R
SS
*
17097 F06
*OPTIONAL TO DEFEAT OVERCURRENT LATCHOFF
20
LTC1709-7
If the external frequency (f
PLLIN
) is greater than the oscil-
lator frequency f
0SC
, current is sourced continuously,
pulling up the PLLFLTR pin. When the external frequency
is less than f
0SC
, current is sunk continuously, pulling
down the PLLFLTR pin. If the external and internal fre-
quencies are the same but exhibit a phase difference, the
current sources turn on for an amount of time correspond-
ing to the phase difference. Thus the voltage on the
PLLFLTR pin is adjusted until the phase and frequency of
the external and internal oscillators are identical. At this
stable operating point the phase comparator output is
open and the filter capacitor C
LP
holds the voltage. The
LTC1709-7 PLLIN pin must be driven from a low imped-
ance source such as a logic gate located close to the pin.
The loop filter components (C
LP
, R
LP
) smooth out the
current pulses from the phase detector and provide a
stable input to the voltage controlled oscillator. The filter
components C
LP
and R
LP
determine how fast the loop
acquires lock. Typically R
LP
=10k and C
LP
is 0.01µF to
0.1µF.
Minimum On-Time Considerations
Minimum on-time, t
ON(MIN)
, is the smallest time duration
that the LTC1709-7 is capable of turning on the top
MOSFET. It is determined by internal timing delays and the
gate charge required to turn on the top MOSFET. Low duty
cycle applications may approach this minimum on-time
limit and care should be taken to ensure that:
t
V
Vf
ON MIN
OUT
IN
()
<
()
If the duty cycle falls below what can be accommodated by
the minimum on-time, the LTC1709-7 will begin to skip
cycles resulting in variable frequency operation. The out-
put voltage will continue to be regulated, but the ripple
current and ripple voltage will increase.
The minimum on-time for the LTC1709-7 is generally less
than 200ns. However, as the peak sense voltage de-
creases, the minimum on-time gradually increases. This is
of particular concern in forced continuous applications
with low ripple current at light loads. If the duty cycle drops
below the minimum on-time limit in this situation, a
significant amount of cycle skipping can occur with corre-
spondingly larger ripple current and voltage ripple.
If an application can operate close to the minimum
on-time limit, an inductor must be chosen that has a low
enough inductance to provide sufficient ripple amplitude
to meet the minimum on-time requirement.
As a general
rule, keep the inductor ripple current of each phase equal
to or greater than 15% of I
OUT(MAX)
at V
IN(MAX)
.
FCB Pin Operation
The FCB pin can be used to regulate a secondary winding
or as a logic level input. Continuous operation is forced
when the FCB pin drops below 0.8V. During continuous
mode, current flows continuously in the transformer pri-
mary. The secondary winding(s) supply current only when
the bottom, synchronous switch is on. When primary load
currents are low and/or the V
IN
/V
OUT
ratio is low, the
synchronous switch may not be on for a sufficient amount
of time to transfer power from the output capacitor to the
secondary load. Forced continuous operation will support
secondary windings providing there is sufficient synchro-
nous switch duty factor. Thus, the FCB input pin removes
the requirement that power must be drawn from the
inductor primary in order to extract power from the
auxiliary winding(s). With the loop in continuous mode,
the auxiliary output(s) may nominally be loaded without
regard to the primary output load.
APPLICATIO S I FOR ATIO
WUU
U
Figure 7. Phase-Locked Loop Block Diagram
EXTERNAL
OSC
2.4V
R
LP
10k
C
LP
OSC
DIGITAL
PHASE/
FREQUENCY
DETECTOR
PHASE
DETECTOR
PLLIN
1709 F07
PLLFLTR
50k
21
LTC1709-7
The secondary output voltage V
SEC
is normally set as
shown in Figure 5a by the turns ratio N of the transformer:
V
SEC
(N + 1) V
OUT
However, if the controller goes into Burst Mode operation
and halts switching due to a light primary load current,
then V
SEC
will droop. An external resistive divider from
V
SEC
to the FCB pin sets a minimum voltage V
SEC(MIN)
:
VV
R
R
SEC MIN()
.≈+
08 1
6
5
where R5 and R6 are shown in the Functional Diagram.
If V
SEC
drops below this level, the FCB voltage forces
temporary continuous switching operation until V
SEC
is
again above its minimum.
In order to prevent erratic operation if no external connec-
tions are made to the FCB pin, the FCB pin has a 0.18µA
internal current source pulling the pin high. Include this
current when choosing resistor values R5 and R6.
The following table summarizes the possible states avail-
able on the FCB pin:
Table 2
FCB Pin Condition
0V to 0.75V Forced Continuous (Current Reversal
Allowed—Burst Inhibited)
0.85V < V
FCB
< 4.3V Minimum Peak Current Induces
Burst Mode Operation
No Current Reversal Allowed
Feedback Resistors Regulating a Secondary Winding
>4.8V Burst Mode Operation Disabled
Constant Frequency Mode Enabled
No Current Reversal Allowed
No Minimum Peak Current
Voltage Positioning
Voltage positioning can be used to minimize peak-to-peak
output voltage excursion under worst-case transient load-
ing conditions. The open-loop DC gain of the control loop
is reduced depending upon the maximum load step speci-
fications. Voltage positioning can easily be added to the
LTC1709-7 by loading the I
TH
pin with a resistive divider
having a Thevenin equivalent voltage source equal to the
APPLICATIO S I FOR ATIO
WUU
U
Figure 8. Active Voltage Positioning Applied to the LTC1709-7
I
TH
R
C
R
T1
INTV
CC
C
C
17097 F08
LTC1709-7
R
T2
midpoint operating voltage of the error amplifier, or 1.2V
(see Figure 8).
The resistive load reduces the DC loop gain while main-
taining the linear control range of the error amplifier. The
worst-case peak-to-peak output voltage deviation due to
transient loading can theoretically be reduced to half or
alternatively the amount of output capacitance can be
reduced for a particular application. A complete explana-
tion is included in Design Solutions 10 or the LTC1736
data sheet. (See www.linear-tech.com)
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can be
expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percentage
of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC1709-7 circuits: 1) I
2
R losses, 2) Topside
MOSFET transition losses, 3) INTV
CC
regulator current
and 4) LTC1709-7 V
IN
current (including loading on the
differential amplifier output).
1) I
2
R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resistor,
and input and output capacitor ESR. In continuous mode
the average output current flows through L and R
SENSE
,
but is “chopped” between the topside MOSFET and the

LTC1709EG-7#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Hi Pwr Polyphase Dc/DC Controller
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet