ADIS16203
Rev. A | Page 9 of 28
3
–3
1 16384
ADC CODES
NONLINEARITY (LSB)
2
1
0
–1
–2
4096 8192 12288
06108-011
Figure 11. Typical ADC Integral Nonlinearity at 25°C/3.3 V
3
–3
1 16384
ADC CODES
NONLINEARITY (LSB)
2
1
0
–1
–2
4096 8192 12288
06108-012
Figure 12. Typical ADC Differential Nonlinearity
120
0
606.6
606.9
607.2
607.5
607.8
608.1
608.4
608.7
609.0
609.3
609.6
609.9
610.2
610.5
610.8
611.1
611.4
611.7
612.0
612.3
612.6
612.9
613.2
613.5
613.8
(µV/LSB)
QUANTITY
100
80
60
40
20
06108-013
Figure 13. DAC Gain Distribution at 25°C/3.3 V
45
0
–2.7
–2.4
–2.1
–1.8
–1.5
–1.2
–0.9
–0.6
–0.3
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
3.6
3.9
4.2
4.5
(mV)
QUANTITY
40
35
30
25
20
15
10
5
06108-014
Figure 14. DAC Offset Distribution at 25°C/3.3 V
5
–5
0 4096
DAC CODES
NONLINEARITY (LSB)
4
3
2
1
0
–1
–2
–3
–4
512 1024 1536 2048 2560 3072 3584
3.0V/–40°C
3.0V/+25°C
3.0V/+125°C
3.3V /–40°C
3.3V/+25°C
3.3V/+125°C
3.6V/–40°C
3.6V/+25°C
3.6V/+125°C
06108-015
Figure 15. Typical DAC Integral Nonlinearity
250
0
2.4975
2.4977
2.4979
2.4981
2.4983
2.4985
2.4987
2.4989
2.4991
2.4993
2.4995
2.4997
2.4999
2.5001
2.5003
2.5005
2.5007
2.5009
2.5011
2.5013
2.5015
2.5017
2.5019
2.5021
2.5023
(V)
QUANTITY
200
150
100
50
06108-016
Figure 16. VREF Distribution at 25°C/3.3 V
ADIS16203
Rev. A | Page 10 of 28
60
0
15
15
16
16
17
17
18
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
(°C)
QUANTITY
50
40
30
20
10
06108-017
Figure 17. Temperature Distribution at 25°C/3.3 V
140
0
9.4
9.7
10.0
10.3
10.6
10.9
11.2
11.5
11.8
12.1
12.4
12.7
13.0
(mA)
QUANTITY
120
100
80
60
40
20
06108-018
Figure 18. Normal Mode Power Supply Current Distribution at 25°C/3.3 V
140
0
29.0
29.6
30.2
30.8
31.4
32.0
32.6
33.2
33.8
34.4
35.0
35.6
36.2
36.8
37.4
38.0
38.6
39.2
39.8
40.4
41.0
41.6
42.2
42.8
43.4
(mA)
QUANTITY
120
100
80
60
40
20
06108-019
Figure 19. Fast Mode Power Supply Current Distribution at 25°C/3.3 V
180
0
370
378
386
394
402
410
418
426
434
442
450
458
466
474
482
490
498
506
514
522
530
538
546
554
562
(µA)
QUANTITY
160
140
120
100
80
60
40
20
06108-020
Figure 20. Sleep Mode Power Supply Current Distribution at 25°C/3.3 V
0
–50 150
TEMPERATURE (°C)
SLEEP MODE CURRENT (A)
0.0010
0.0008
0.0006
0.0004
0.0002
–30 –10 10 30 50 70 90 110 130
06108-021
Figure 21. Sleep Mode Current vs. Temperature at 3.3 V
0
2.9 3.7
SUPPLY VOLTAGE (V)
SLEEP MODE CURRENT (A)
0.0010
0.0008
0.0006
0.0004
0.0002
3.0 3.1 3.2 3.3 3.4 3.5 3.6
06108-022
Figure 22. Sleep Mode Current vs. Supply Voltage at 25°C
ADIS16203
Rev. A | Page 11 of 28
THEORY OF OPERATION
OUTPUT RESPONSE
The ADIS16203 is a calibrated digital inclinometer that provides a
full 360° of measurement range in any rotational plane that is parallel to
the earths gravity. A dual-axis accelerometer provides the base-sensing
function, which resolves the earths gravity into two orthogonal vectors,
as displayed in Figure 23. A power-efficient approach to a common
trigonometric identity converts these orthogonal vectors into an incline-
angle measurement.
The incline-angle measurements are linear with respect to
degrees, and the sensor’s orientation produces the output
response displayed in Figure 25. This figure is helpful in
understanding the basic orientation of the inertial sensor
measurement axes.
BOTTOM
VIEW
(Not to Scale)
INCL_OUT = +270°
INCL_180_OUT = –90°
INCL_OUT = 180°
INCL_180_OUT = 180°
INCL_OUT = 0°
INCL_180_OUT = 0°
INCL_OUT = 90°
INCL_180_OUT = 90°
EARTH’S SURFACE
06108-023
EARTH’S SURFACE
1g
1g
a
2
a
1
06108-036
Figure 23. Sensor Measurement Diagram
The digital postprocessing circuit digitizes the sensor outputs
and applies sensitivity/offset calibration coefficients prior to angle
calculations. A factory calibration produces these coefficients using
a full 360° mechanical rotational apparatus. This eliminates the need
for system-level calibration in many cases. In addition to calibrating
the sensor elements, the ADIS16203 corrects for power-supply-
dependent parameters, providing a more robust calibration.
Figure 25. Output Response vs. Orientation
The accuracy of the incline-angle measurements relies on three
important factors: the absence of external (aside from gravity)
acceleration, managing offset errors introduced during system-level
configuration, and maintaining a proper axis of rotation (rotation
plane parallel with earths gravity). All of these factors can influence
the acceleration measurements and introduce error. The ADIS16203
provides a simple method for calibrating configuration errors by
providing the INCL_NULL register function. See the Calibration
section for more details. In addition, a 10° tilt plane error can
introduce as much as ±1° of error in the incline-angle outputs.
TEMPERATURE SENSOR
An internal temperature sensor monitors the accelerometers
junction temperature. The TEMP_OUT data register provides
a digital representation of this measurement. This sensor provides
a convenient temperature measurement for system-level charac-
terization and calibration feedback.
SYSTEM-LEVEL ORIENTATION OFFSET
TILT PLANE ERROR
IDEAL = 9
PCB
ATTACHMENT
OFFSET
EARTH’S SURFACE
06108-038
Figure 24. ADIS16203 System-Level Orientation

ADIS16203CCCZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Inclinometers IC 360 Degree Inclinometer
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet