AD7858/AD7858L
REV. B
–13–
CALIBRATION REGISTERS
The AD7858/AD7858L has 10 calibration registers in all, eight for the DAC, one for the offset, and one for gain. Data can be written
to or read from all 10 calibration registers. In self- and system calibration the part automatically modifies the calibration registers; only if the
user needs to modify the calibration registers should an attempt be made to read from and write to the calibration registers.
Addressing the Calibration Registers
The calibration selection bits in the control register CALSLT1 and CALSLT0 determine which of the calibration registers are ad-
dressed (see Table V). The addressing applies to both the read and write operations for the calibration registers. The user should not
attempt to read from and write to the calibration registers at the same time.
Table V. Calibration Register Addressing
CALSLT1 CALSLT0 Comment
0 0 This combination addresses the Gain (1), Offset (1) and DAC Registers (8). Ten registers in total.
0 1 This combination addresses the Gain (1) and Offset (1) Registers. Two registers in total.
1 0 This combination addresses the Offset Register. One register in total.
1 1 This combination addresses the Gain Register. One register in total.
Writing to/Reading from the Calibration Registers
For writing to the calibration registers a write to the control
register is required to set the CALSLT0 and CALSLT1 bits.
For reading from the calibration registers a write to the control
register is required to set the CALSLT0 and CALSLT1 bits,
but also to set the RDSLT1 and RDSLT0 bits to 10 (this ad-
dresses the calibration registers for reading). The calibration
register pointer is reset on writing to the control register setting
the CALSLT1 and CALSLT0 bits, or upon completion of all
the calibration register write/read operations. When reset it
points to the first calibration register in the selected write/read
sequence. The calibration register pointer will point to the gain
calibration register upon reset in all but one case, this case being
where the offset calibration register is selected on its own
(CALSLT1 = 1, CALSLT0 = 0). Where more than one calibra-
tion register is being accessed the calibration register pointer will
be automatically incremented after each calibration register
write/read operation. The order in which the 10 calibration
registers are arranged is shown in Figure 7. The user may abort
at any time before all the calibration register write/read opera-
tions are completed, and the next control register write opera-
tion will reset the calibration register pointer. The flow chart in
Figure 8 shows the sequence for writing to the calibration regis-
ters and Figure 9 for reading.
CAL REGISTER
ADDRESS POINTER
GAIN REGISTER
OFFSET REGISTER
DAC 1ST MSB REGISTER
DAC 8TH MSB REGISTER
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(1)
(2)
(3)
(10)
CALIBRATION REGISTERS
CALIBRATION REGISTER
ADDRESS POINTER
POSITION IS DETERMINED
BY THE NUMBER OF
CALIBRATION REGISTERS
ADDRESSED AND THE
NUMBER OF READ/WRITE
OPERATIONS
Figure 7. Calibration Register Arrangements
When reading from the calibration registers there will always be
two leading zeros for each of the registers. When operating in
Serial Interface Mode 1 the read operations to the calibration
registers cannot be aborted. The full number of read operations
must be completed (see section on Serial Interface Mode 1
Timing for more detail).
START
WRITE TO CONTROL REGISTER SETTING STCAL = 0
AND CALSLT1, CALSLT0 = 00, 01, 10, 11
CAL REGISTER POINTER IS
AUTOMATICALLY RESET
WRITE TO CAL REGISTER
(ADDR1 = 1, ADDR0 = 0)
CAL REGISTER POINTER IS
AUTOMATICALLY INCREMENTED
LAST
REGISTER
WRITE
OPERATION
OR
ABORT
?
FINISHED
YES
NO
Figure 8. Flowchart for Writing to the Calibration Registers
REV. B
–14–
AD7858/AD7858L
START
WRITE TO CONTROL REGISTER SETTING STCAL = 0, RDSLT1 = 1,
RDSLT0 = 0, AND CALSLT1, CALSLT0 = 00, 01, 10, 11
CAL REGISTER POINTER IS
AUTOMATICALLY RESET
READ CAL REGISTER
CAL REGISTER POINTER IS
AUTOMATICALLY INCREMENTED
LAST
REGISTER
READ
OPERATION
OR
ABORT
?
FINISHED
YES
NO
Figure 9. Flowchart for Reading from the Calibration
Registers
Adjusting the Offset Calibration Register
The offset calibration register contains 16 bits, two leading zeros,
and 14 data bits. By changing the contents of the offset register
different amounts of offset on the analog input signal can be
compensated for. Increasing the number in the offset calibration
register compensates for negative offset on the analog input
signal, and decreasing the number in the offset calibration regis-
ter compensates for positive offset on the analog input signal.
The default value of the offset calibration register is 0010 0000
0000 0000 approximately. This is not an exact value, but the
value in the offset register should be close to this value. Each of
the 14 data bits in the offset register is binary weighted; the
MSB has a weighting of 5% of the reference voltage, the MSB-1
has a weighting of 2.5%, the MSB-2 has a weighting of 1.25%,
and so on down to the LSB which has a weighting of 0.0006%.
This gives a resolution of ±0.0006% of V
REF
approximately.
More accurately the resolution is ± (0.05 × V
REF
)/2
13
volts =
±0.015 mV, with a 2.5 V reference. The maximum offset that
can be compensated for is ±5% of the reference voltage, which
equates to ±125 mV with a 2.5 V reference and ±250 mV with
a 5 V reference.
Q. If a +20 mV offset is present in the analog input signal and the
reference voltage is 2.5 V what code needs to be written to the
offset register to compensate for the offset?
A. 2.5 V reference implies that the resolution in the offset regis-
ter is 5% × 2.5 V/2
13
= 0.015 mV. +20 mV/0.015 mV =
1310.72; rounding to the nearest number gives 1311. In
binary terms this is 0101 0001 1111. Therefore, decrease the
offset register by 0101 0001 1111.
This method of compensating for offset in the analog input
signal allows for fine tuning the offset compensation. If the
offset on the analog input signal is known, there will be no need
to apply the offset voltage to the analog input pins and do a
system calibration. The offset compensation can take place in
software.
Adjusting the Gain Calibration Register
The gain calibration register contains 16 bits, two leading 0s
and 14 data bits. The data bits are binary weighted as in the
offset calibration register. The gain register value is effectively
multiplied by the analog input to scale the conversion result
over the full range. Increasing the gain register compensates for
a smaller analog input range and decreasing the gain register
compensates for a larger input range. The maximum analog
input range that the gain register can compensate for is 1.025
times the reference voltage, and the minimum input range is
0.975 times the reference voltage.
AD7858/AD7858L
REV. B
–15–
CIRCUIT INFORMATION
The AD7858/AD7858L is a fast, 12-bit single supply A/D con-
verter. The part requires an external 4 MHz/1.8 MHz master
clock (CLKIN), two C
REF
capacitors, a CONVST signal to start
conversion, and power supply decoupling capacitors. The part
provides the user with track/hold, on-chip reference, calibration
features, A/D converter, and serial interface logic functions on a
single chip. The A/D converter section of the AD7858/AD7858L
consists of a conventional successive-approximation converter
based around a capacitor DAC. The AD7858/AD7858L accepts
an analog input range of 0 to +V
DD
where the reference can be
tied to V
DD
. The reference input to the part is buffered on-chip.
A major advantage of the AD7858/AD7858L is that a conversion
can be initiated in software as well as applying a signal to the
CONVST pin. Another innovative feature of the AD7858/
AD7858L is self-calibration on power-up, which is initiated
having a capacitor from the CAL pin to AGND, to give superior
dc accuracy. See Automatic Calibration on Power-Up section.
The part is available in a 24-pin SSOP package and this offers
the user considerable space-saving advantages over alternative
solutions. The AD7858L version typically consumes only
5.5 mW making it ideal for battery-powered applications.
CONVERTER DETAILS
The master clock for the part must be applied to the CLKIN
pin. Conversion is initiated on the AD7858/AD7858L by pulsing
the CONVST input or by writing to the control register and
setting the CONVST bit to 1. On the rising edge of CONVST
(or at the end of the control register write operation), the on-
chip track/hold goes from track to hold mode. The falling edge
of the CLKIN signal that follows the rising edge of the CONVST
signal initiates the conversion, provided the rising edge of
CONVST occurs at least 10 ns typically before this CLKIN
edge. The conversion cycle will take 16.5 CLKIN periods from
this CLKIN falling edge. If the 10 ns setup time is not met, the
conversion will take 17.5 CLKIN periods. The maximum speci-
fied conversion time is 4.6 µs for the AD7858 (18t
CLKIN
,
CLKIN = 4 MHz) and 10 µs for the AD7858L (18t
CLKIN
,
CLKIN = 1.8 MHz). When a conversion is completed, the
BUSY output goes low, and then the result of the conversion
can be read by accessing the data through the serial interface.
To obtain optimum performance from the part, the read opera-
tion should not occur during the conversion or 400 ns prior to
the next CONVST rising edge. However, the maximum
throughput rates are achieved by reading/writing during conver-
sion, and reading/writing during conversion is likely to degrade
the Signal to (Noise + Distortion) by only 0.5 dBs. The AD7858
can operate at throughput rates up to 200 kHz, 100 kHz for the
AD7858L. For the AD7858 a conversion takes 18 CLKIN
periods; 2 CLKIN periods are needed for the acquisition time
giving a full cycle time of 5 µs (= 200 kHz, CLKIN = 4 MHz).
For the AD7858L 100 kHz throughput can be obtained as
follows: the CLKIN and CONVST signals are arranged to give
a conversion time of 16.5 CLKIN periods as described above,
1.5 CLKIN periods are allowed for the acquisition time. This
gives a full cycle time of 10 µs (=100 kHz, CLKIN = 1.8 MHz).
When using the software conversion start for maximum through-
put the user must ensure the control register write operation
extends beyond the falling edge of BUSY. The falling edge of
BUSY resets the CONVST bit to 0 and allows it to be repro-
grammed to 1 to start the next conversion.
TYPICAL CONNECTION DIAGRAM
Figure 10 shows a typical connection diagram for the AD7858/
AD7858L. The AGND and the DGND pins are connected
together at the device for good noise suppression. The CAL pin
has a 0.01 µF capacitor to enable an automatic self-calibration
on power-up. The conversion result is output in a 16-bit word
with four leading zeros followed by the MSB of the 12-bit result.
Note that after the AV
DD
and DV
DD
power-up the part will
CH1
CH2
CH3
CH4
CH5
OSCILLOSCOPE
4 LEADING
ZEROS FOR
ADC DATA
AUTO CAL ON
POWER-UP
OPTIONAL
EXTERNAL
REFERENCE
AD780/
REF-192
4MHz/1.8MHz OSCILLATOR
MASTER CLOCK
INPUT
0.1F
0.1F10F
ANALOG SUPPLY
+3V TO +5V
0V TO 2.5V
INPUT
0.1F
0.01F
DV
DD
0.01F
0.1F
INTERNAL/
EXTERNAL
REFERENCE
200kHz/100kHz PULSE GENERATOR
CONVERSION
START INPUT
SERIAL CLOCK
INPUT
FRAME SYNC INPUT
SERIAL DATA INPUT
SERIAL DATA
OUTPUT
DATA GENERATOR
PULSE GENERATOR
CLKIN
SCLK
CONVST
SYNC
DIN
DOUT
DGND
AGND
CAL
SLEEP
C
REF2
C
REF1
AIN(–)
AIN(+)
AV
DD
DV
DD
AD7858/
AD7858L
Figure 10. Typical Circuit

AD7858LARZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 3-5V SGL Supply 200kSPS 8-Ch 12-Bit
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union