REV. B
–28–
AD7858/AD7858L
MICROPROCESSOR INTERFACING
In many applications, the user may not require the facility of
writing to most of the on-chip registers. The only writing neces-
sary is to set the input channel configuration. After this the
CONVST is applied, a conversion is performed, and the result
may be read using the SCLK to clock out the data from the
output register on to the DOUT pin. At the same time a write
operation occurs and this may consist of all 0s where no data is
written to the part or may set a different input channel configu-
ration for the next conversion. The SCLK may be connected to
the CLKIN pin if the user does not want to have to provide
separate serial and master clocks. With this arrangement the
SYNC signal must be low for 16 SCLK cycles for the read and
write operations.
DIN
DOUT
SYNC
CONVST
CLKIN
SCLK
AD7858/
AD7858L
4MHz/1.8MHz
MASTER CLOCK
SYNC SIGNAL TO
GATE THE SCLK
SERIAL DATA
OUTPUT
CONVERSION START
SERIAL DATA INPUT
Figure 36. Simplified Interface Diagram
AD7858/AD7858L to 8XC51 Interface
Figure 37 shows the AD7858/AD7858L interface to the
8XC51. The 8XL51 is for interfacing to the AD7858/AD7858L
when the supply is at 3 V. The 8XC51 only runs at 5 V. The
8XC51 is in Mode 0 operation. This is a two-wire interface
consisting of the SCLK and the DIN which acts as a bidirec-
tional line. The SYNC is tied low. The BUSY line can be used
to give an interrupt driven system but this would not normally
be the case with the 8XC51. For the 8XC51 12 MHz version
the serial clock will run at a maximum of 1 MHz so the serial
interface of the AD7858/AD7858L will only be running at
1 MHz. The CLKIN signal must be provided separately to the
AD7858/AD7858L from a port line on the 8XC51 or from a
source other than the 8XC51. Here the SCLK cannot be tied to
the CLKIN as the SYNC is tied low permanently. The CONVST
signal can be provided from an external timer or conversion can
be started in software if required. The sequence of events would
typically be to write to the control register via the DIN line setting
a conversion start and the 2-wire interface mode (this would be
performed in two 8-bit writes), wait for the conversion to be
finished (4.6 µs with 4 MHz CLKIN), read the conversion result
data on the DIN line (this would be performed in two 8-bits
reads), and repeat the sequence. The maximum serial frequency
will be determined by the data access and hold times of the
8XC51 and the AD7858/AD7858L.
8XC51/L51
P3.0
P3.1
AD7858/AD7858L
CONVST
CLKIN
SCLK
DIN
SYNC
OPTIONAL
4MHz/1.8MHz
BUSY
(INT0/P3.2)
MASTER
SLAVE
OPTIONAL
Figure 37. 8XC51/PIC16C42 Interface
AD7858/AD7858L to 68HC11/16/L11/PIC16C42 Interface
Figure 38 shows the AD7858/AD7858L SPI/QSPI interface to
the 68HC11/16/L11/PIC16C42. The 68L11 is for interfacing to
the AD7858/AD7858L when the supply is 3 V. The AD7858/
AD7858L is in Interface Mode 2. The SYNC line is not used
and is tied to DGND. The µController is configured as the mas-
ter, by setting the MSTR bit in the SPCR to 1, and provides the
serial clock on the SCK pin. For all the µControllers the CPOL
bit is set to 1 and for the 68HC11/16/L11 the CPHA bit is set to
1. The CLKIN and CONVST signals can be supplied from the
µController or from separate sources. The BUSY signal can be
used as an interrupt to tell the µController when the conversion
is finished, then the reading and writing can take place. If re-
quired the reading and writing can take place during conversion
and there will be no need for the BUSY signal in this case.
68HC11/L11/16
SCK
SS
CONVST
CLKIN
SCLK
DIN
SYNC
OPTIONAL
4MHz/1.8MHz
BUSY
IRQ
MASTER
SLAVE
OPTIONAL
DOUT
MISO
MOSI
SPI
DV
DD
HC16, QSPI
AD7858/AD7858L
Figure 38. 68HC11 and 68HC16 Interface
For the 68HC16 the word length should be set to 16 bits, and
the SS line should be tied to the SYNC pin for the QSPI inter-
face. The micro-sequencer and RAM associated with the
68HC16 QSPI port can be used to perform a number of read
and write operations, and store the conversion results in
memory, independent of the CPU. This is especially useful when
reading the conversion results from all eight channels consecu-
tively. The command section of the QSPI port RAM would be
programmed to perform a conversion on one channel, read the
conversion result, perform a conversion on the next channel,
read the conversion result, and so on until all eight conversion
results are stored into the QSPI RAM.
AD7858/AD7858L
REV. B
–29–
A typical sequence of events would be to write to the control
register via the DIN line setting a conversion start and at the
same time reading data from the previous conversion on the
DOUT line (both the read and write operations would each be
two 8-bit operations, one 16-bit operation for the 68HC16),
wait for the conversion to be finished (= 4.6 µs for AD7858
with 4 MHz CLKIN), and then repeat the sequence. The maxi-
mum serial frequency will be determined by the data access and
hold times of the µControllers and the AD7858/AD7858L.
AD7858/AD7858L to ADSP-21xx Interface
Figure 39 shows the AD7858/AD7858L interface to the ADSP-
21xx. The ADSP-21xx is the master and the AD7858/AD7858L
is the slave. The AD7858/AD7858L is in Interface Mode 2.
For the ADSP-21xx the bits in the serial port control register
should be set up as TFSR = RFSR = 1 (need a frame sync for
every transfer), SLEN = 15 (16-bit word length), TFSW =
RFSW = 1 (alternate framing mode for transmit and receive
operations), INVRFS = INVTFS = 1 (active low RFS and
TFS), IRFS = 0, ITFS = 1 (External RFS and internal TFS),
and ISCLK = 1 (internal serial clock). The CLKIN and
CONVST signals can be supplied from the ADSP-21xx or
from an external source. The serial clock from the ADSP-21xx
must be inverted before the SCLK pin of the AD7858/AD7858L.
This SCLK could also be used to drive the CLKIN input of the
AD7858/AD7858L. The BUSY signal indicates when the con-
version is finished and may not be required. The data access
and hold times of the ADSP-21xx and the AD7858/AD7858L
allow for a serial clock of 4 MHz/1.8 MHz at 5 V and 3.3 MHz/
1.8 MHz at 3 V supplies.
ADSP-21xx
CONVST
CLKIN
DOUT
DIN
SYNC
OPTIONAL
4MHz/1.8MHz
BUSY
IRQ
MASTER
SLAVE
TFS
DT
SCK
SCLK
RFS
DR
OPTIONAL
AD7858/AD7858L
Figure 39. ADSP-21xx Interface
AD7858/AD7858L to DSP56000/1/2/L002 Interface
Figure 40 shows the AD7858/AD7858L to DSP56000/1/2/
L002 interface. Here the DSP5600x is the master and the
AD7858 is the slave. The AD7858/AD7858L is in Interface
Mode 2. The DSP56L002 is used when the AD7858/AD7858L
is being operated at 3 V. The setting of the bits in the registers
of the DSP5600x would be for synchronous operation (SYN =
1), internal frame sync (SCD2 = 1), gated internal clock (GCK
= 1, SCKD = 1), 16-bit word length (WL1 = 1, WL0 = 0). Since
a gated clock is used here the SCLK cannot be tied to the CLKIN
of the AD7858/AD7858L. The SCLK from the DSP5600x
must be inverted before it is applied to the AD7858/AD7858L.
Again the data access and hold times of the DSP5600x and
the AD7858/AD7858L allows for a SCLK of 4 MHz/1.8 MHz.
DSP56000/1/2/L002
SRD
CONVST
CLKIN
SCLK
DIN
SYNC
OPTIONAL
BUSY
IRQ
MASTER
SLAVE
OPTIONAL
DOUT
SC2
STD
SCK
4MHz/1.8MHz
AD7858/AD7858L
Figure 40. DSP56000/1/2 Interface
REV. B
–30–
AD7858/AD7858L
APPLICATION HINTS
Grounding and Layout
The analog and digital supplies to the AD7858/AD7858L are
independent and separately pinned out to minimize coupling
between the analog and digital sections of the device. The part
has very good immunity to noise on the power supplies as can
be seen by the PSRR vs. Frequency graph. However, care
should still be taken with regard to grounding and layout.
The printed circuit board that houses the AD7858/AD7858L
should be designed such that the analog and digital sections are
separated and confined to certain areas of the board. This facili-
tates the use of ground planes that can be separated easily. A
minimum etch technique is generally best for ground planes as
it gives the best shielding. Digital and analog ground planes
should only be joined in one place. If the AD7858/AD7858L is
the only device requiring an AGND to DGND connection,
then the ground planes should be connected at the AGND and
DGND pins of the AD7858/AD7858L. If the AD7858/
AD7858L is in a system where multiple devices require AGND
to DGND connections, the connection should still be made at
one point only, a star ground point which should be established
as close as possible to the AD7858/AD7858L.
Avoid running digital lines under the device as these will couple
noise onto the die. The analog ground plane should be allowed
to run under the AD7858/AD7858L to avoid noise coupling.
The power supply lines to the AD7858/AD7858L should use as
large a trace as possible to provide low impedance paths and
reduce the effects of glitches on the power supply line. Fast
switching signals like clocks should be shielded with digital
ground to avoid radiating noise to other sections of the board,
and clock signals should never be run near the analog inputs.
Avoid crossover of digital and analog signals. Traces on oppo-
site sides of the board should run at right angles to each other.
This will reduce the effects of feedthrough through the board. A
microstrip technique is by far the best but is not always possible
with a double-sided board. In this technique, the component
side of the board is dedicated to ground planes while signals are
placed on the solder side.
Good decoupling is also important. All analog supplies should
be decoupled with 10 µF tantalum in parallel with 0.1 µF ca-
pacitors to AGND. All digital supplies should have a 0.1 µF
disc ceramic capacitor to AGND. To achieve the best from
these decoupling components, they must be placed as close as
possible to the device, ideally right up against the device. In
systems where a common supply voltage is used to drive both
the AV
DD
and DV
DD
of the AD7858/AD7858L, it is recom-
mended that the systems AV
DD
supply be used. In this case
there should be a 10 resistor between the AV
DD
pin and
DV
DD
pin. This supply should have the recommended analog
supply decoupling capacitors between the AV
DD
pin of the
AD7858/AD7858L and AGND and the recommended digital
supply decoupling capacitor between the DV
DD
pin of the
AD7858/AD7858L and DGND.
Evaluating the AD7858/AD7858L Performance
The recommended layout for the AD7858/AD7858L is out-
lined in the evaluation board for the AD7858/AD7858L. The
evaluation board package includes a fully assembled and tested
evaluation board, documentation, and software for controlling
the board from the PC via the EVAL-CONTROL BOARD.
The EVAL-CONTROL BOARD can be used in conjunction
with the AD7858/AD7858L Evaluation board, as well as many
other Analog Devices evaluation boards ending in the CB desig-
nator, to demonstrate/evaluate the ac and dc performance of the
AD7858/AD7858L.
The software allows the user to perform ac (fast Fourier trans-
form) and dc (histogram of codes) tests on the AD7858/
AD7858L. It also gives full access to all the AD7858/AD7858L
on-chip registers allowing for various calibration and power-
down options to be programmed.
AD785x Family
All parts are 12 bits, 200 kSPS, 3.0 V to 5.5 V.
AD7853 – Single Channel Serial
AD7854 – Single Channel Parallel
AD7858 – Eight Channel Serial
AD7859 – Eight Channel Parallel

AD7858LARZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 3-5V SGL Supply 200kSPS 8-Ch 12-Bit
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union