MAX1040/MAX1042/MAX1046/MAX1048
10-Bit, Multichannel ADCs/DACs with FIFO,
Temperature Sensing, and GPIO Ports
22 ______________________________________________________________________________________
Table 5c. Clock Mode 11
REFSEL1 REFSEL0
VOLTAGE
REFERENCE
OVERRIDE
CONDITIONS
AUTOSHUTDOWN
REF2
CONFIGURATION
AIN
Inter nal r efer ence tur ns off after scan i s com p l ete. If
i nter nal r efer ence i s tur ned off, ther e i s a p r og r am m ed
d el ay of 218 exter nal conver si on cl ock cycl es.
00
Internal (DAC
and ADC)
Temperature
Inter nal r efer ence r eq ui r ed . Ther e i s a p r og r am m ed
d el ay of 244 exter nal conver si on cl ock cycl es for the
i nter nal r efer ence. Tem p er atur e- sensor outp ut ap p ear s
at D OU T after 188 fur ther exter nal cl ock cycl es.
AIN6
AIN Internal reference not used.
01
External single-
ended (REF1
for DAC and
REF2 for ADC)
Tem p er atur e
Inter nal r efer ence r eq ui r ed . Ther e i s a p r og r am m ed
d el ay of 244 exter nal conver si on cl ock cycl es for the
i nter nal r efer ence. Tem p er atur e- sensor outp ut ap p ear s
at D OU T after 188 fur ther exter nal cl ock cycl es.
REF2
AIN
Default reference mode. Internal reference turns off
after scan is complete. If internal reference is turned
off, there is a programmed delay of 218 external
conversion clock cycles.
10
Internal (ADC)
and external
REF1 (DAC)
Temperature
Inter nal r efer ence r eq ui r ed . Ther e i s a p r og r am m ed
d el ay of 244 exter nal conver si on cl ock cycl es for the
i nter nal r efer ence. Tem p er atur e- sensor outp ut ap p ear s
at D OU T after 188 fur ther exter nal cl ock cycl es.
AIN6
AIN Internal reference not used.
11
External
differential
(ADC), external
REF1 (DAC)
Temperature
Inter nal r efer ence r eq ui r ed . Ther e i s a p r og r am m ed
d el ay of 244 exter nal conver si on cl ock cycl es for the
i nter nal r efer ence. Tem p er atur e- sensor outp ut ap p ear s
at D OU T after 188 fur ther exter nal cl ock cycl es.
REF2
Table 5d. Differential Select Modes
DIFFSEL1 DIFFSEL0 FUNCTION
0 0 No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.
0 1 No data follows the command setup byte. Unipolar-mode and bipolar-mode registers remain unchanged.
1 0 1 byte of data follows the command setup byte and is written to the unipolar-mode register.
1 1 1 byte of data follows the command setup byte and is written to the bipolar-mode register.
MAX1040/MAX1042/MAX1046/MAX1048
10-Bit, Multichannel ADCs/DACs with FIFO,
Temperature Sensing, and GPIO Ports
______________________________________________________________________________________ 23
Table 6. Unipolar-Mode Register (Addressed Through the Setup Register)
BIT NAME BIT FUNCTION
UCH0/1 7 (MSB) Configure AIN0 and AIN1 for unipolar differential conversion.
UCH2/3 6 Configure AIN2 and AIN3 for unipolar differential conversion.
UCH4/5 5
Configure AIN4 and AIN5 for unipolar differential conversion (MAX1040/MAX1042). Set UCH4/5 to 0
on the MAX1046/MAX1048.
UCH6/7 4
Configure AIN6 and AIN7 for unipolar differential conversion (MAX1040/MAX1042). Set UCH6/7 to 0
on the MAX1046/MAX1048.
X 3 Don’t care.
X 2 Don’t care.
X 1 Don’t care.
X 0 (LSB) Don’t care.
Table 7. Bipolar-Mode Register (Addressed Through the Setup Register)
BIT NAME BIT FUNCTION
BCH0/1 7 (MSB)
Set to one to configure AIN0 and AIN1 for bipolar differential conversion. Set the corresponding bits
in the unipolar-mode and bipolar-mode registers to zero to configure AIN0 and AIN1 for unipolar
single-ended conversion.
BCH2/3 6
Set to one to configure AIN2 and AIN3 for bipolar differential conversion. Set the corresponding bits
in the unipolar-mode and bipolar-mode registers to zero to configure AIN2 and AIN3 for unipolar
single-ended conversion.
BCH4/5 5
Set to one to configure AIN4 and AIN5 for bipolar differential conversion (MAX1040/MAX1042). Set
the corresponding bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN4
and AIN5 for unipolar single-ended conversion. Set BCH4/5 to 0 on the MAX1046/MAX1048.
BCH6/7 4
Set to one to configure AIN6 and AIN7 for bipolar differential conversion (MAX1040/MAX1042). Set
the corresponding bits in the unipolar-mode and bipolar-mode registers to zero to configure AIN6
and AIN7 for unipolar single-ended conversion. Set BCH6/7 to 0 on the MAX1046/MAX1048.
X 3 Don’t care.
X 2 Don’t care.
X 1 Don’t care.
X 0 (LSB) Don’t care.
MAX1040/MAX1042/MAX1046/MAX1048
10-Bit, Multichannel ADCs/DACs with FIFO,
Temperature Sensing, and GPIO Ports
24 ______________________________________________________________________________________
Unipolar/Bipolar Registers
The final 2 bits (LSBs) of the setup register control the
unipolar-/bipolar-mode address registers. Set
DIFFSEL[1:0] = 10 to write to the unipolar-mode regis-
ter. Set bits DIFFSEL[1:0] = 11 to write to the bipolar-
mode register. In both cases, the setup command byte
must be followed by 1 byte of data that is written to the
unipolar-mode register or bipolar-mode register. Hold
CS low and run 16 SCLK cycles before pulling CS high.
If the last 2 bits of the setup register are 00 or 01, nei-
ther the unipolar-mode register nor the bipolar-mode
register is written. Any subsequent byte is recognized
as a new command byte. See Tables 6, 7, and 8 to pro-
gram the unipolar- and bipolar-mode registers.
Both registers power up at all zeros to set the inputs as
eight unipolar single-ended channels. To configure a
channel pair as single-ended unipolar, bipolar differen-
tial, or unipolar differential, see Table 8.
In unipolar mode, AIN+ can exceed AIN- by up to
V
REF
. The output format in unipolar mode is binary. In
bipolar mode, either input can exceed the other by up
to V
REF
/ 2. The output format in bipolar mode is two’s
complement (see the
ADC Transfer Functions
section).
ADC Averaging Register
Write a command byte to the ADC averaging register to
configure the ADC to average up to 32 samples for
each requested result, and to independently control the
number of results requested for single-channel scans.
Table 8. Unipolar/Bipolar Channel Function
UNIPOLAR-
MODE
REGISTER BIT
BIPOLAR-MODE
REGISTER BIT
CHANNEL PAIR
FUNCTION
0 0 Unipolar single ended
0 1 Bipolar differential
1 0 Unipolar differential
1 1 Unipolar differential
Table 9. ADC Averaging Register*
BIT NAME BIT FUNCTION
7 (MSB) Set to zero to select ADC averaging register.
6 Set to zero to select ADC averaging register.
5 Set to one to select ADC averaging register.
AVGON 4 Set to one to turn averaging on. Set to zero to turn averaging off.
NAVG1 3 Configures the number of conversions for single-channel scans.
NAVG0 2 Configures the number of conversions for single-channel scans.
NSCAN1 1 Single-channel scan count. (Scan mode 10 only.)
NSCAN0 0 (LSB) Single-channel scan count. (Scan mode 10 only.)
AVGON NAVG1 NAVG0 FUNCTION
0 X X Performs one conversion for each requested result.
1 0 0 Performs four conversions and returns the average for each requested result.
1 0 1 Performs eight conversions and returns the average for each requested result.
1 1 0 Performs 16 conversions and returns the average for each requested result.
1 1 1 Performs 32 conversions and returns the average for each requested result.
NSCAN1 NSCAN0 FUNCTION (APPLIES ONLY IF SCAN MODE 10 IS SELECTED)
0 0 Scans channel N and returns four results.
0 1 Scans channel N and returns eight results.
1 0 Scans channel N and returns 12 results.
1 1 Scans channel N and returns 16 results.
*
See below for bit details.

MAX1046BETX+T

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Data Acquisition ADCs/DACs - Specialized 10Bit AD/DACs w/FIFO Temp Sns & GPIO Port
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union