AD977/AD977A
–22–
REV. D
DATA
NULL BIT
DEVICE DATA #1
DEVICE
DATA #2
15 0
15
DCLK
R/C
BUSY
Figure 28. TAG Timing Diagram for Two Concatenated
AD977/AD977As
POWER-DOWN FEATURE
The AD977/AD977A has analog and reference power-down
capability through the PWRD pin. When the PWRD pin is
taken high, the power consumption drops from a maximum
value of 100 mW to a typical value of 50 µW. When in the
power-down mode the previous conversion results are still avail-
able in the internal registers and can be read out providing it has
not already been shifted out.
When used with an external reference, connected to the REF
pin and a 2.2 µF capacitor, connected to the CAP pin, the
power up recovery time is typically 1 ms. This typical value of
1 ms for recovery time depends on how much charge has decayed
from the external 2.2 µF capacitor on the CAP pin and assumes
that it has decayed to zero. The 1 ms recovery time has been
specified such that settling to 16-bits has been achieved.
When used with the internal reference, the dominant time con-
stant for power-up recovery is determined by the external
capacitor on the REF pin and the internal 4K impedance seen
at that pin. An external 2.2 µF capacitor is recommended for the
REF pin.
CONSIDERATIONS WHEN USING MULTIPLEXED
INPUTS
Consideration must be given to the effect on A/D performance
in applications that require the use of analog multiplexers or analog
switches to interface multiple signals to the AD977/AD977A. The
nonzero “on” resistance of a multiplexer or switch, at the input
to the AD977/AD977A, will increase the system offset and gain
error. As an example, consider the AD977 configured for an input
voltage range of ±10 V dc. For every 5 of source impedance
(in addition to the required external 200 input resistor) an
offset error of 1 LSB would be introduced and the positive
gain error would increase by an added 0.00375% of full scale.
This error, due to nonzero source impedance, can be cor-
rected through a hardware or software system level calibration,
but will only be valid at the temperature and input voltage
present at the time of calibration. Another factor to consider is
that most analog multiplexers and switches exhibit a nonlinear
relationship between input signal level and on resistance. This
will introduce added distortion products that will degrade THD,
S/(N+D) and INL. For these reasons it is recommended that an
appropriate buffer be used between the output of the multiplexer
and the input of the AD977.
When switching the input to the multiplexer, and subsequently
the input to the AD977, it is recommended that the transition
be made to occur either immediately after the current conver-
sion is complete or shortly after the beginning of a conversion.
MICROPROCESSOR INTERFACING
The AD977/AD977A is ideally suited for traditional dc mea-
surement applications supporting a microprocessor, and ac
signal processing applications interfacing to a digital signal
processor. The AD977/AD977A is designed to interface with a
general purpose serial port or I/O ports on a microcontroller. A
variety of external buffers can be used with the AD977/AD977A
to prevent digital noise from coupling into the ADC. The
following sections illustrate the use of the AD977/AD977A with
an SPI equipped microcontroller and the ADSP-2181 signal
processor.
SPI Interface
Figure 29 shows a general interface diagram between the
AD977/AD977A and an SPI equipped microcontroller. This
interface assumes that the convert pulses will originate from the
microcontroller and that the AD977/AD977A will act as the
slave device. The convert pulse could be initiated in response to
an internal timer interrupt. The reading of output data, one byte
at a time, if necessary, could be initiated in response to the end-
of-conversion signal (BUSY going high).
+5V
SDI
SCK
I/O PORT
IRQ
SPI
DATACLK
DATA
TAG
AD977/
AD977A
EXT/INT
CS
BUSY
R/C
Figure 29. AD977/AD977A to SPI Interface
ADSP-2181 Interface
Figure 30 shows an interface between the AD977/AD977A and
the ADSP-2181 Digital Signal Processor. The AD977/AD977A
is configured for the Internal Clock mode (EXT/INT = 0) and
will therefore act as the master device. The convert command is
shown generated from an external oscillator in order to provide
a low jitter signal appropriate for both dc and ac measurements.
Because the SPORT, within the ADSP-2181, will be seeing a
discontinuous external clock, some steps are required to ensure
that the serial port is properly synchronized to this clock during
each data read operation. The recommended procedure to ensure
this is as follows,
enable SPORT0 through the System Control register
set the SCLK Divide register to zero
setup PF0 and PF1 as outputs by setting bits 0 and 1 in
PFTYPE
force RFS0 low through PF0. The Receive Frame Sync signal
has been programmed active high
enable AD977/AD977A by forcing CS = 0 through PF1
enable SPORT0 Receive Interrupt through the IMASK register
wait for at least one full conversion cycle of the AD977/AD977A
and throw away the received data
disable the AD977/AD977A by forcing CS = 1 through PF1
wait for a period of time equal to one conversion cycle
force RFS0 high through PF0
enable the AD977/AD977A by forcing CS = 0 through PF1
AD977/AD977A
–23–REV. D
The ADSP-2181 SPORT0 will now remain synchronized to the
external discontinuous clock for all subsequent conversions.
DR0
SCLK0
PF1
ADSP-2181
DATACLK
DATA
TAG
AD977/
AD977A
OSCILLATOR
RFS0
PF0
SPORT0 CNTRL REG = 0x300F
EXT/INT
CS
R/C
Figure 30. AD977/AD977A to ADSP-2181 Interface
POWER SUPPLIES AND DECOUPLING
The AD977/AD977A has two power supply input pins. V
ANA
and V
DIG
provide the supply voltages to the analog and digital
portions, respectively. V
ANA
is the 5 V supply for the on-chip
analog circuitry, and V
DIG
is the 5 V supply for the on-chip
digital circuitry. The AD977/AD977A is designed to be inde-
pendent of power supply sequencing and thus free from supply
voltage induced latchup.
With high performance linear circuits, changes in the power
supplies can result in undesired circuit performance. Optimally,
well regulated power supplies should be chosen with less than
1% ripple. The ac output impedance of a power supply is a
complex function of frequency and will generally increase with
frequency. Thus, high frequency switching, such as that encoun-
tered with digital circuitry, requires the fast transient currents
that most power supplies cannot adequately provide. Such a
situation results in large voltage spikes on the supplies. To com-
pensate for the finite ac output impedance of most supplies,
charge “reserves” should be stored in bypass capacitors. This
will effectively lower the supplies impedance presented to the
AD977/AD977A V
ANA
and V
DIG
pins and reduce the magnitude
of these spikes. Decoupling capacitors, typically 0.1 µF, should
be placed close to the power supply pins of the AD977/AD977A
to minimize any inductance between the capacitors and the
V
ANA
and V
DIG
pins.
The AD977/AD977A may be operated from a single 5 V
supply. When separate supplies are used, however, it is benefi-
cial to have larger capacitors, 10 µF, placed between the logic
supply (V
DIG
) and digital common (DGND) and between the
analog supply (V
ANA
) and the analog common (AGND2).
Additionally, 10 µF capacitors should be located in the vicinity
of the ADC to further reduce low frequency ripple. In systems
where the device will be subjected to harsh environmental noise,
additional decoupling may be required.
GROUNDING
The AD977/AD977A has three ground pins; AGND1, AGND2
and DGND. The analog ground pins are the “high quality”
ground reference points and should be connected to the system
analog common. AGND2 is the ground to which most internal
ADC analog signals are referenced. This ground is most sus-
ceptible to current induced voltage drops and thus must be
connected with the least resistance back to the power supply.
AGND1 is the low current analog supply ground and should be
the analog common for the external reference, input op amp
drive circuitry and the input resistor divider circuit. By applying
the inputs referenced to this ground, any ground variations will
be offset and have a minimal effect on the resulting analog input
to the ADC. The digital ground pin, DGND, is the reference
point for all of the digital signals that control the AD977/AD977A.
The AD977/AD977A can be powered with two separate power
supplies or with a single analog supply. When the system digital
supply is noisy, or fast switching digital signals are present, it is
recommended to connect the analog supply to both the V
ANA
and V
DIG
pins of the AD977/AD977A and the system supply to
the remaining digital circuitry. With this configuration, AGND1,
AGND2 and DGND should be connected back at the ADC.
When there is significant bus activity on the digital output pins,
the digital and analog supply pins on the ADC should be
separated. This would eliminate any high speed digital noise
from coupling back to the analog portion of the AD977/
AD977A. In this configuration, the digital ground pin DGND
should be connected to the system digital ground and be
separate from the AGND pins.
BOARD LAYOUT
Designing with high resolution data converters requires careful
attention to board layout. Trace impedance is a significant issue.
A 1.22 mA current through a 0.5 trace will develop a voltage
drop of 0.6 mV, which is 2 LSBs at the 16-bit level over the
20 volt full-scale range. Ground circuit impedances should be
reduced as much as possible since any ground potential differ-
ences between the signal source and the ADC appear as an error
voltage in series with the input signal. In addition to ground
drops, inductive and capacitive coupling needs to be considered.
This is especially true when high accuracy analog input signals
share the same board with digital signals. Thus, to minimize input
noise coupling, the input signal leads to V
IN
and the signal
return leads from AGND should be kept as short as possible.
In addition, power supplies should also be decoupled to filter
out ac noise.
Analog and digital signals should not share a common path.
Each signal should have an appropriate analog or digital return
routed close to it. Using this approach, signal loops enclose a
small area, minimizing the inductive coupling of noise. Wide PC
tracks, large gauge wire and ground planes are highly recom-
mended to provide low impedance signal paths. Separate analog
and digital ground planes are also recommended with a single
interconnection point to minimize ground loops. Analog signals
should be routed as far as possible from high speed digital sig-
nals and should only cross them, if absolutely necessary, at right
angles.
In addition, it is recommended that multilayer PC boards be used
with separate power and ground planes. When designing the
separate sections, careful attention should be paid to the layout.
AD977/AD977A
–24–
REV. D
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
C00913d–5–10/00 (rev. D)
PRINTED IN U.S.A.
20-Lead Plastic DIP
(N-20)
20
110
11
1.060 (26.90)
0.925 (23.50)
0.280 (7.11)
0.240 (6.10)
PIN 1
SEATING
PLANE
0.022 (0.558)
0.014 (0.356)
0.060 (1.52)
0.015 (0.38)
0.210 (5.33)
MAX
0.130
(3.30)
MIN
0.070 (1.77)
0.045 (1.15)
0.100
(2.54)
BSC
0.160 (4.06)
0.115 (2.93)
0.325 (8.25)
0.300 (7.62)
0.015 (0.381)
0.008 (0.204)
0.195 (4.95)
0.115 (2.93)
20-Lead Wide Body (SOIC)
(R-20)
SEATING
PLANE
0.0118 (0.30)
0.0040 (0.10)
0.0192 (0.49)
0.0138 (0.35)
0.1043 (2.65)
0.0926 (2.35)
0.0500
(1.27)
BSC
0.0125 (0.32)
0.0091 (0.23)
0.0500 (1.27)
0.0157 (0.40)
8°
0°
0.0291 (0.74)
0.0098 (0.25)
x 45°
20 11
101
0.5118 (13.00)
0.4961 (12.60)
0.4193 (10.65)
0.3937 (10.00)
0.2992 (7.60)
0.2914 (7.40)
PIN 1
28-Lead Shrink Small Outline Package (SSOP)
(RS-28)
28 15
141
0.407 (10.34)
0.397 (10.08)
0.311 (7.9)
0.301 (7.64)
0.212 (5.38)
0.205 (5.21)
PIN 1
SEATING
PLANE
0.008 (0.203)
0.002 (0.050)
0.07 (1.79)
0.066 (1.67)
0.0256
(0.65)
BSC
0.078 (1.98)
0.068 (1.73)
0.015 (0.38)
0.010 (0.25)
0.009 (0.229)
0.005 (0.127)
0.03 (0.762)
0.022 (0.558)
8°
0°

AD977ABRSZRL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 16-Bit 200 kSPS Serial I/O
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union