AD977/AD977A
–7–REV. D
DEFINITION OF SPECIFICATIONS
INTEGRAL NONLINEARITY ERROR (INL)
Linearity error refers to the deviation of each individual code
from a line drawn from “negative full scale” through “positive
full scale.” The point used as “negative full scale” occurs 1/2 LSB
before the first code transition. “Positive full scale” is defined as
a level 1 1/2 LSB beyond the last code transition. The deviation
is measured from the middle of each particular code to the true
straight line.
DIFFERENTIAL NONLINEARITY ERROR (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It
is often specified in terms of resolution for which no missing
codes are guaranteed.
FULL-SCALE ERROR
The last + transition (from 011 . . . 10 to 011 . . . 11 for two’s
complement format) should occur for an analog voltage 1 1/2 LSB
below the nominal full scale (9.9995422 V for a ±10 V range).
The full-scale error is the deviation of the actual level of the last
transition from the ideal level.
BIPOLAR ZERO ERROR
Bipolar zero error is the difference between the ideal midscale
input voltage (0 V) and the actual voltage producing the
midscale output code.
UNIPOLAR ZERO ERROR
In unipolar mode, the first transition should occur at a level
1/2 LSB above analog ground. Unipolar zero error is the devia-
tion of the actual transition from that point.
SPURIOUS FREE DYNAMIC RANGE
The difference, in decibels (dB), between the rms amplitude of
the input signal and the peak spurious signal.
TOTAL HARMONIC DISTORTION (THD)
THD is the ratio of the rms sum of the first six harmonic com-
ponents to the rms value of a full-scale input signal and is
expressed in decibels.
SIGNAL TO (NOISE AND DISTORTION) (S/[N+D]) RATIO
S/(N+D) is the ratio of the rms value of the measured input
signal to the rms sum of all other spectral components below the
Nyquist frequency, including harmonics but excluding dc. The
value for S/(N+D) is expressed in decibels.
FULL POWER BANDWIDTH
The full power bandwidth is defined as the full-scale input fre-
quency at which the S/(N+D) degrades to 60 dB, 10 bits of
accuracy.
APERTURE DELAY
Aperture delay is a measure of the acquisition performance, and
is measured from the falling edge of the R/C input to when the
input signal is held for a conversion.
TRANSIENT RESPONSE
The time required for the AD977/AD977A to achieve its rated
accuracy after a full-scale step function is applied to its input.
OVERVOLTAGE RECOVERY
The time required for the ADC to recover to full accuracy after
an analog input signal 150% of full-scale is reduced to 50% of
the full-scale value.
AD977/AD977A
–8–
REV. D
CONVERSION CONTROL
The AD977/AD977A is controlled by two signals: R/C and CS.
When R/C is brought low, with CS low, for a minimum of 50 ns,
the input signal will be held on the internal capacitor array and
a conversion “n” will begin. Once the conversion process does
begin, the BUSY signal will go low until the conversion is com-
plete. Internally, the signals R/C and CS are OR’d together and
there is no requirement on which signal is taken low first when
initiating a conversion. The only requirement is that there be at
least 10 ns of delay between the two signals being taken low.
After the conversion is complete the BUSY signal will return
high and the AD977/AD977A will again resume tracking the
input signal. Under certain conditions the CS pin can be tied
Low and R/C will be used to determine whether you are initiat-
ing a conversion or reading data. On the first conversion, after
the AD977/AD977A is powered up, the DATA output will be
indeterminate.
Conversion results can be clocked serially out of the AD977/
AD977A using either an internal clock, generated by the
AD977/AD977A, or by using an external clock. The AD977/
AD977A is configured for the internal data clock mode by pull-
ing the EXT/INT pin low. It is configured for the external clock
mode by pulling the EXT/INT pin high.
INTERNAL DATA CLOCK MODE
The AD977/AD977A is configured to generate and provide the
data clock when the EXT/INT pin is held low. Typically CS will
be tied low and R/C will be used to initiate a conversion “n.”
During the conversion the AD977/AD977A will output 16 bits of
data, MSB first, from conversion “n-1” on the DATA pin. This
data will be synchronized with 16 clock pulses provided on the
DATACLK pin. The output data will be valid on both the
rising and falling edge of the data clock as shown in Figure 3.
After the LSB has been presented, the DATA pin will assume
whatever state the TAG input was at during the start of con-
version, and the DATACLK pin will stay low until another
conversion is initiated.
EXTERNAL DATA CLOCK MODE
The AD977/AD977A is configured to accept an externally sup-
plied data clock when the EXT/INT pin is held high. This mode
of operation provides several methods by which conversion
results can be read from the AD977/AD977A. The output data
from conversion “n-1” can be read during conversion “n,” or the
output data from conversion “n” can be read after the conver-
sion is complete. The external clock can be either a continuous
or discontinuous clock. A discontinuous clock can be either
t
1
t
3
t
2
t
5
t
6
t
4
t
7
CS, R/C
MODE
ACQUIRE CONVERTACQUIRE CONVERT
BUSY
Figure 2. Basic Conversion Timing
BUSY
R/C
t
8
t
11
t
6
DATACLK
t
1
t
9
t
10
MSB VALID
BIT 14
VALID
BIT 13
VALID
BIT 1
VALID
LSB VALID
t
2
123 1516
DATA
Figure 3. Serial Data Timing for Reading Previous Conversion Results with Internal Clock (
CS
, EXT/
INT
and TAG Set to
Logic Low)
AD977/AD977A
–9–REV. D
normally low or normally high when inactive. In the case of the
discontinuous clock, the AD977/AD977A can be configured to
either generate or not generate a SYNC output (with a continu-
ous clock a SYNC output will always be produced).
Each of the methods will be described in the following sections
and are illustrated in Figures 4 through 9. It should be noted
that all timing diagrams assume that the receiving device is
latching data on the rising edge of the external clock. If the
falling edge of DATACLK is used then, in the case of a discon-
tinuous clock, one less clock pulse is required than shown in
Figures 4 through 7 to latch in a 16-bit word. Note that data is
valid on the falling edge of a clock pulse (for t
13
greater than t
18
)
and the rising edge of the next clock pulse.
The AD977 provides error correction circuitry that can correct
for an improper bit decision made during the first half of the
conversion cycle. Normally the occurrence of an incorrect bit
decision during a conversion cycle is irreversible. This error
occurs as a result of noise during the time of the decision or due
to insufficient settling time. As the AD977/AD977A is perform-
ing a conversion it is important that transitions not occur on
digital input/output pins or degradation of the conversion result
could occur. This is particularly important during the second
half of the conversion process. For this reason it is recommended
that when an external clock is being provided it be a discontinu-
ous clock that is not toggling during the time that BUSY is low
or, more importantly, that it does not transition during the latter
half of BUSY low.
EXTERNAL DISCONTINUOUS CLOCK DATA READ
AFTER CONVERSION NO SYNC OUTPUT GENERATED
Figure 4 illustrates the method by which data from conversion
“n” can be read after the conversion is complete using a discon-
tinuous external clock without the generation of a SYNC
output. After a conversion is complete, indicated by BUSY
returning high, the result of that conversion can be read while
CS is Low and R/C is high. In this mode CS can be tied low.
The MSB will be valid on the first falling edge and the second
rising edge of DATACLK. The LSB will be valid on the 16th
falling edge and the 17th rising edge of DATACLK. A mini-
mum of 16 clock pulses are required for DATACLK if the
receiving device will be latching data on the falling edge of
DATACLK. A minimum of 17 clock pulses are required for
DATACLK if the receiving device will be latching data on the
rising edge of DATACLK. Approximately 40 ns after the 17th
rising edge of DATACLK (if provided) the DATA output pin
will reflect the state of the TAG input pin during the first rising
edge of DATACLK.
The advantage of this method of reading data is that it is not
being clocked out during a conversion and therefore conversion
performance is not degraded.
When reading data after the conversion is complete, with the
highest frequency permitted for DATACLK (15.15 MHz), and
with the AD977A, the maximum possible throughput is approxi-
mately 195 kHz and not the rated 200 kHz.
For details on use of the TAG input with this mode see the Use
of the Tag Feature section.
BUSY
R/C
EXT
DATACLK
t
13
t
18
BIT 15
(MSB)
BIT 14
12
DATA
SYNC
t
14
t
12
0 3 14 15 16
t
1
t
2
t
24
t
21
BIT 13
BIT 1
BIT 0
(LSB)
TAG 0
TAG 1
t
23
TAG 0
TAG 1
TAG 2 TAG 3
TAG 15 TAG 16 TAG 17
t
18
TAG 18
TAG
Figure 4. Conversion and Read Timing Using an External Discontinuous Data Clock (EXT/
INT
Set to Logic High,
CS
Set
to Logic Low)

AD977ABRSZRL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 16-Bit 200 kSPS Serial I/O
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union