MAX1167/MAX1168
setting bits 4 and 3 in the command/configuration/con-
trol register (see Tables 3 and 4). In scan mode, conver-
sion results are stored in memory until the completion of
the last conversion in the sequence. Upon completion of
the last conversion in the sequence, EOC transitions
from high to low to indicate the end of the conversion
and shuts down the internal oscillator. Use the EOC
high-to-low transition as the signal to restart the external
clock (SCLK). DOUT provides the conversion results in
the same order as the channel conversion process. The
MSB of the first conversion is available at DOUT on the
falling edge of EOC. Figure 15 shows the timing
diagram for 16-bit-wide data transfer in scan mode.
DSP 8-Bit-Wide Data-Transfer Mode (External Clock
Mode, MAX1168 Only)
Figure 16 shows the DSP-interface timing diagram.
Logic low at DSPR on the falling edge of CS enables
DSP interface mode. After the MAX1168 enters DSP
mode, CS can remain low for the duration of the conver-
sion process and each subsequent conversion. Drive
DSEL low to select the 8-bit data-transfer mode. A sync
pulse from the DSP at DSPR wakes the analog circuitry
and allows SCLK to clock in data (Figure 17). The frame
sync pulse alerts the MAX1168 that incoming data is
about to be sent to DIN. Ensure the duty cycle on SCLK
is between 45% and 55% when operating at 4.8MHz
(the maximum clock frequency). For lower clock fre-
quencies, ensure the minimum high and low times are at
least 93ns. External clock mode conversions with SCLK
rates less than 125kHz can reduce accuracy due to
leakage of the sampling capacitor. The input data
latches on the falling edge of SCLK. The command/
configuration/control register starts reading data in on
the falling edge of the first SCLK cycle immediately fol-
lowing the falling edge of the frame sync pulse and
ends on the falling edge of the 8th SCLK cycle. The
MAX1168 selects the proper channel for conversion on
the falling edge of the 3rd clock cycle and begins
acquisition. Acquisition continues until the rising edge
of the 7th clock cycle. The MAX1168 samples the input
on the rising edge of the 7th clock cycle. On the rising
edge of the 8th clock cycle, the MAX1168 outputs a
frame sync pulse at DSPX. The frame sync pulse alerts
the DSP that the conversion results are about to be out-
put at DOUT (MSB first) starting on the rising edge of
the 9th clock pulse. To read the entire conversion
result, 16 SCLK cycles are needed. Extra clock pulses,
occurring after the conversion result has been clocked
out and prior to the next rising edge of DSPR, cause
zeros to be clocked out of DOUT. The MAX1168 exter-
nal clock, DSP 8-bit-wide data-transfer mode requires
24 clock cycles to complete.
Begin a new conversion by sending a new frame sync
pulse to DSPR followed by new configuration data.
Send the new DSPR pulse immediately after reading
the conversion result to realize maximum throughput.
Sending a new frame sync pulse in the middle of a con-
version immediately aborts the current conversion and
begins a new one. A rising edge on CS in the middle of
a conversion aborts the current conversion and places
the MAX1168 in shutdown.
DSP 16-Bit-Wide Data-Transfer Mode (External
Clock Mode, MAX1168 Only)
Figure 16 shows the DSP-interface timing diagram.
Logic low at DSPR on the falling edge of CS enables
DSP interface mode. After the MAX1168 enters DSP
mode, CS can remain low for the duration of the con-
version process and each subsequent conversion. The
acquisition time is extended an extra eight SCLK cycles
in the 16-bit-wide data-transfer mode. Drive DSEL high
to select the 16-bit-wide data-transfer mode. A sync
pulse from the DSP at DSPR wakes the analog circuitry
and allows SCLK to clock in data (Figure 18). The
frame sync pulse also alerts the MAX1168 that incom-
ing data is about to be sent to DIN. Ensure the duty
cycle on SCLK is between 45% and 55% when operat-
ing at 4.8MHz (the maximum clock frequency). For
lower clock frequencies, ensure the minimum high and
low times are at least 93ns. External-clock-mode con-
versions with SCLK rates less than 125kHz can reduce
accuracy due to leakage of the sampling capacitor.
Multichannel, 16-Bit, 200ksps Analog-to-Digital
Converters
22 ______________________________________________________________________________________
OUTPUT CODE
FULL-SCALE
TRANSITION
1111...111
123
0
FS
FS - 3/2 LSB
FS = V
REF
INPUT VOLTAGE (LSB)
1 LSB =
V
REF
65,536
1111...110
1111...101
0000...011
0000...010
0000...001
0000...000
Figure 19. Unipolar Transfer Function, Full Scale (FS) = V
REF
,
Zero Scale (ZS) = GND
MAX1167/MAX1168
Multichannel, 16-Bit, 200ksps Analog-to-Digital
Converters
______________________________________________________________________________________ 23
The input data latches on the falling edge of SCLK. The
command/configuration/control register starts reading
data in on the falling edge of the first SCLK cycle immedi-
ately following the falling edge of the frame sync pulse
and ends on the falling edge of the 16th SCLK cycle. The
MAX1168 selects the proper channel for conversion on
the falling edge of the 3rd clock cycle and begins acqui-
sition. Acquisition continues until the rising edge of the
15th clock cycle. The MAX1168 samples the input on the
rising edge of the 15th clock cycle. On the rising edge of
the 16th clock cycle, the MAX1168 outputs a frame sync
pulse at DSPX. The frame sync pulse alerts the DSP that
the conversion results are about to be output at DOUT
(MSB first) starting on the rising edge of the 17th clock
pulse. To read the entire conversion result, 16 SCLK
cycles are needed. Extra clock pulses, occurring after the
conversion result has been clocked out and prior to the
next rising edge of DSPR, cause zeros to be clocked out
of DOUT. The MAX1168 external clock, DSP 16-bit-wide
data-transfer mode requires 32 clock cycles to complete.
Begin a new conversion by sending a new frame sync
pulse to DSPR followed by new configuration data.
Send the new DSPR pulse immediately after reading
the conversion result to realize maximum throughput.
Sending a new frame sync pulse in the middle of a con-
version immediately aborts the current conversion and
begins a new one. A rising edge on CS in the middle of
a conversion aborts the current conversion and places
the MAX1168 in shutdown.
Output Coding and Transfer Function
The data output from the MAX1167/MAX1168 is straight
binary. Figure 19 shows the nominal transfer function.
Code transitions occur halfway between successive
integer LSB values (V
REF
= +4.096V, and 1 LSB =
+62.5µV or 4.096V / 65,536V).
CS
SCLK
DOUT
I/O
SCK
MISO
SPI
V
DD
SS
MAX1167
MAX1168
Figure 20a. SPI Connections
MAX1167
MAX1168
CS
MICROWIRE
SCLK
DOUT
I/O
SK
SI
Figure 20b. MICROWIRE Connections
DOUT*
CS
SCLK
1ST BYTE READ
2ND BYTE READ
*WHEN CS IS HIGH, DOUT = HIGH-Z
MSB
HIGH-Z
3RD BYTE READ
LSB
D1 D0D7 D6 D5 D4 D3 D2
2420
1612
8
641
D15 D14 D13 D12 D11 D10 D9 D8 D7
00000000
Figure 20c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)
MAX1167/MAX1168
Multichannel, 16-Bit, 200ksps Analog-to-Digital
Converters
24 ______________________________________________________________________________________
Applications Information
Internal Reference
The internal bandgap reference provides a buffered
+4.096V. Bypass REFCAP with a 0.1µF capacitor to
AGND and REF with a 1µF capacitor to AGND. For best
results, use low-ESR, X5R/X7R ceramic capacitors.
Allow 5ms for the reference and buffer to wake up from
full power-down (see Table 5).
External Reference
The MAX1167/MAX1168 accept an external reference
with a voltage range between +3.8V and AV
DD
. Connect
the external reference directly to REF. Bypass REF to
AGND with a 10µF capacitor. When not using a low-ESR
bypass capacitor, use a 0.1µF ceramic capacitor in paral-
lel with the 10µF capacitor. Noise on the reference
degrades conversion accuracy.
The input impedance at REF is 37kΩ for DC currents.
During a conversion, the external reference at REF
must deliver 118µA of DC load current and have an out-
put impedance of 10Ω or less.
For optimal performance, buffer the reference through
an op amp and bypass the REF input. Consider the
equivalent input noise (40µV
RMS
) of the MAX1167/
MAX1168 when choosing a reference.
Internal/External Oscillator
Select either an external (0.1MHz to 4.8MHz) or the
internal 4MHz (typ) clock to perform conversions
(Table 6). The external clock shifts data in and out of
the MAX1167/MAX1168 in either clock mode.
When using the internal clock mode, the internal oscilla-
tor controls the acquisition and conversion processes,
while the external oscillator shifts data in and out of the
MAX1167/MAX1168. Turn off the external clock (SCLK)
when the internal clock is on to realize lowest noise per-
formance. The internal clock remains off in external
clock mode.
Input Buffer
Most applications require an input-buffer amplifier to
achieve 16-bit accuracy. The input amplifier must have
a slew rate of at least 2V/µs and a unity-gain bandwidth
of at least 10MHz to complete the required output-volt-
age change before the end of the acquisition time.
At the beginning of the acquisition, the internal sam-
pling capacitor array connects to AIN_ (the amplifier
input), causing some disturbance on the output of the
buffer. Ensure the sampled voltage has settled before
the end of the acquisition time.
CONTROL BIT SETTINGS SYNCHRONOUS SERIAL-PORT CONTROL REGISTER (SSPCON)
WCOL BIT7 X Write Collision Detection Bit
SSPOV BIT6 X Receive Overflow Detection Bit
SSPEN BIT5 1
Synchronous Serial-Port Enable Bit:
0: Disables serial port and configures these pins as I/O port pins.
1: Enables serial port and configures SCK, SDO, and SCI pins as serial
port pins.
CKP BIT4 0 Clock Polarity Select Bit. CKP = 0 for SPI master-mode selection.
SSPM3 BIT3 0
SSPM2 BIT2 0
SSPM1 BIT1 0
SSPM0 BIT0 1
Synchronous Serial-Port Mode Select Bit. Sets SPI master mode and
selects f
CLK
= f
OSC
/ 16.
Table 7. Detailed SSPCON Register Contents
X = Don’t care.
QSPI
SCLK
DOUT
CS
SCK
MISO
V
DD
SS
CS
MAX1167
MAX1168
Figure 21a. QSPI Connections

MAX1168CCEG+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Analog to Digital Converters - ADC Integrated Circuits (ICs) Analog to Digital Converters - IC ADC 16BIT 200KSPS 24-QSOP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union