13
FN8118.3
December 9, 2015
Acknowledge Polling
The disabling of the inputs during nonvolatile cycles
can be used to take advantage of the typical 5kHz
write cycle time. Once the stop condition is issued to
indicate the end of the master’s byte load operation,
the device initiates the internal nonvolatile cycle.
Acknowledge polling can be initiated immediately. To
do this, the master issues a start condition followed by
the slave address byte for a write or read operation. If
the device is still busy with the nonvolatile cycle then
no ACK will be returned. If the device has completed
the write operation, an ACK will be returned and the
host can then proceed with the read or write operation.
Refer to the flow chart in Figure 13.
Serial Read Operations
Read operations are initiated in the same manner as
write operations with the exception that the R/W
bit of
the slave address byte is set to one. There are three
basic read operations: Current Address Reads, Ran-
dom Reads, and Sequential Reads.
Current Address Read
Internally the device contains an address counter that
maintains the address of the last word read incre-
mented by one. Therefore, if the last read was to
address n, the next read operation would access data
from address n+1. On power-up, the address of the
address counter is undefined, requiring a read or write
operation for initialization.
Upon receipt of the slave address byte with the R/W
bit
set to one, the device issues an acknowledge and then
transmits the eight bits of the data byte. The master ter-
minates the read operation when it does not respond
with an acknowledge during the ninth clock and then
issues a stop condition. Refer to Figure 13 for the
address, acknowledge, and data transfer sequence.
Figure 13. Acknowledge Polling Sequence
It should be noted that the ninth clock cycle of the read
operation is not a “don’t care.” To terminate a read
operation, the master must either issue a stop condi-
tion during the ninth cycle or hold SDA HIGH during
the ninth clock cycle and then issue a stop condition.
Figure 14. Current Address Read Sequence
ACK
Returned?
Issue Slave Address
Byte (Read or Write)
Byte Load Completed
by Issuing STOP.
Enter ACK Polling
Issue STOP
Issue START
NO
YES
Nonvolatile Cycle
Complete. Continue
Command
Issue STOP
NO
Continue Normal Read
or Write Command
Sequence
PROCEED
YES
S
t
a
r
t
S
t
o
p
Slave
Address
Data
A
C
K
SDA Bus
Signals from
the Slave
Signals from
the Master
1
X4043, X4045
14
FN8118.3
December 9, 2015
Random Read
Random read operation allows the master to access
any memory location in the array. Prior to issuing the
slave address byte with the R/W
bit set to one, the
master must first perform a “dummy” write operation.
The master issues the start condition and the slave
address byte, receives an acknowledge, then issues
the word address bytes. After acknowledging receipts
of the word address bytes, the master immediately
issues another start condition and the slave address
byte with the R/W
bit set to one. This is followed by an
acknowledge from the device and then by the eight bit
word. The master terminates the read operation by not
responding with an acknowledge and then issuing a
stop condition. Refer to Figure 15 for the address,
acknowledge, and data transfer sequence.
Figure 15. Random Address Read Sequence
There is a similar operation, called “Set Current
Address” where the device does no operation, but
enters a new address into the address counter if a
stop is issued instead of the second start shown in Fig-
ure 14. The device goes into standby mode after the
stop and all bus activity will be ignored until a start is
detected. The next current address read operation
reads from the newly loaded address. This operation
could be useful if the master knows the next address it
needs to read, but is not ready for the data.
Sequential Read
Sequential reads can be initiated as either a current
address read or random address read. The first data
byte is transmitted as with the other modes; however,
the master now responds with an acknowledge, indicat-
ing it requires additional data. The device continues to
output data for each acknowledge received. The master
terminates the read operation by not responding with an
acknowledge and then issuing a stop condition.
The data output is sequential, with the data from address
n followed by the data from address n + 1. The address
counter for read operations increments through all page
and column addresses, allowing the entire memory con-
tents to be serially read during one operation. At the end
of the address space the counter “rolls over” to address
0000
H
and the device continues to output data for each
acknowledge received. Refer to Figure 16 for the
acknowledge and data transfer sequence.
Figure 16. Sequential Read Sequence
0
Slave
Address
Byte
Address
A
C
K
A
C
K
S
t
a
r
t
S
t
o
p
Slave
Address
Data
A
C
K
1
S
t
a
r
t
SDA Bus
Signals from
the Slave
Signals from
the Master
Data
(2)
S
t
o
p
Slave
Address
Data
(n)
A
C
K
A
C
K
SDA Bus
Signals from
the Slave
Signals from
the Master
1
Data
(n-1)
(n is any integer greater than 1)
Data
(1)
A
C
K
A
C
K
X4043, X4045
15
FN8118.3
December 9, 2015
Data Protection
The following circuitry has been included to prevent
inadvertent writes:
The WEL bit must be set to allow write operations.
The proper clock count and bit sequence is required
prior to the stop bit in order to start a nonvolatile
write cycle.
A three step sequence is required before writing into
the control register to change watchdog timer or
block lock settings.
The WP pin, when held HIGH, prevents all writes to
the array and the control register.
Communication to the device is inhibited as a result
of a low voltage condition (V
CC
< V
TRIP
)any in-prog-
ress communication is terminated.
Block lock bits can protect sections of the memory
array from write operations.
Symbol Table
X4043, X4045

X4043S8-2.7T1

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
IC SUPERVISOR CPU 4K EE 8-SOIC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union