LT1976/LT1976B
13
1976bfg
APPLICATIO S I FOR ATIO
WUUU
capacitive loads or high input voltages can cause a high
input current surge during start-up. The soft-start func-
tion reduces input current surge by regulating switch
current via the V
C
pin to maintain a constant voltage ramp
rate (dV/dt) at the output. A capacitor (C1 in Figure 2) from
the C
SS
pin to the output determines the maximum output
dV/dt. When the feedback voltage is below 0.4V, the V
C
pin
will rise, resulting in an increase in switch current and
output voltage. If the dV/dt of the output causes the current
through the C
SS
capacitor to exceed I
CSS
the V
C
voltage is
reduced resulting in a constant dV/dt at the output. As the
feedback voltage increases I
CSS
increases, resulting in an
increased dV/dt until the soft-start function is defeated
with 0.9V present at the FB pin. The soft-start function
does not affect operation during normal load conditions.
However, if a momentary short (brown out condition) is
present at the output which causes the FB voltage to drop
below 0.9V, the soft-start circuitry will become active.
INPUT CAPACITOR
Step-down regulators draw current from the input supply
in pulses. The rise and fall times of these pulses are very
fast. The input capacitor is required to reduce the voltage
ripple this causes at the input of LT1976 and force the
switching current into a tight local loop, thereby minimiz-
ing EMI. The RMS ripple current can be calculated from:
I
I
V
VVV
RIPPLE RMS
OUT
IN
OUT IN OUT()
=
()
Ceramic capacitors are ideal for input bypassing. At 200kHz
switching frequency input capacitor values in the range of
4.7μF to 20μF are suitable for most applications. If opera-
tion is required close to the minimum input required by the
LT1976 a larger value may be required. This is to prevent
excessive ripple causing dips below the minimum operat-
ing voltage resulting in erratic operation.
Input voltage transients caused by input voltage steps or
by hot plugging the LT1976 to a pre-powered source such
as a wall adapter can exceed maximum V
IN
ratings. The
sudden application of input voltage will cause a large
surge of current in the input leads that will store energy in
the parasitic inductance of the leads. This energy will
cause the input voltage to swing above the DC level of input
power source and it may exceed the maximum voltage
rating of the input capacitor and LT1976. All input voltage
transient sequences should be observed at the V
IN
pin of
the LT1976 to ensure that absolute maximum voltage
ratings are not violated.
The easiest way to suppress input voltage transients is to
add a small aluminum electrolytic capacitor in parallel with
the low ESR input capacitor. The selected capacitor needs
to have the right amount of ESR to critically damp the
resonant circuit formed by the input lead inductance and
the input capacitor. The typical values of ESR will fall in the
range of 0.5Ω to 2Ω and capacitance will fall in the range
of 5μF to 50μF.
If tantalum capacitors are used, values in the 22μF to
470μF range are generally needed to minimize ESR and
meet ripple current and surge ratings. Care should be
taken to ensure the ripple and surge ratings are not
exceeded. The AVX TPS and Kemet T495 series are surge
rated AVX recommends derating capacitor operating volt-
age by 2:1 for high surge applications.
OUTPUT CAPACITOR
The output capacitor is normally chosen by its effective
series resistance (ESR) because this is what determines
output ripple voltage. To get low ESR takes volume, so
physically smaller capacitors have higher ESR. The ESR
range for typical LT1976 applications is 0.05Ω to 0.2Ω. A
typical output capacitor is an AVX type TPS, 100μF at 10V,
with a guaranteed ESR less than 0.1Ω. This is a “D” size
surface mount solid tantalum capacitor. TPS capacitors
are specially constructed and tested for low ESR, so they
give the lowest ESR for a given volume. The value in
microfarads is not particularly critical and values from
22μF to greater than 500μF work well, but you cannot
cheat Mother Nature on ESR. If you find a tiny 22μF solid
tantalum capacitor, it will have high ESR and output ripple
voltage could be unacceptable. Table 3 shows some
typical solid tantalum surface mount capacitors.
LT1976/LT1976B
14
1976bfg
APPLICATIO S I FOR ATIO
WUUU
filter capacitor C
F
in parallel with the R
C
/C
C
network, along
with a small feedforward capacitor C
FB
, is suggested to
control possible ripple at the V
C
pin. The LT1976 can be
stabilized using a 47μF ceramic output capacitor and V
C
component values of C
C
= 0.047μF, R
C
= 12.5k, C
F
= 100pF
and C
FB
= 27pF.
OUTPUT RIPPLE VOLTAGE
Figure 3 shows a typical output ripple voltage waveform
for the LT1976. Ripple voltage is determined by the
impedance of the output capacitor and ripple current
through the inductor. Peak-to-peak ripple current through
the inductor into the output capacitor is:
I
VVV
VLf
OUT IN OUT
IN
P-P
=
()
()()()
For high frequency switchers the ripple current slew rate
is also relevant and can be calculated from:
di
dt
V
L
IN
=
Peak-to-peak output ripple voltage is the sum of a triwave
created by peak-to-peak ripple current times ESR and a
square wave created by parasitic inductance (ESL) and
ripple current slew rate. Capacitive reactance is assumed
to be small compared to ESR or ESL.
V I ESR ESL
di
dt
RIPPLE
=
()( )
+
()
P-P
Figure 3. LT1976 Ripple Voltage Waveform
V
OUT
20mV/DIV
47μF TANTALUM
ESR 100mΩ
V
OUT
20mV/DIV
47μF CERAMIC
V
SW
5V/DIV
V
IN
= 12V 1μs/DIV 1976 F03
V
OUT
= 3.3V
I
LOAD
= 1A
L = 33μH
Table 3. Surface Mount Solid Tantalum Capacitor ESR
and Ripple Current
E CASE SIZE ESR MAX (Ω) RIPPLE CURRENT (A)
AVX TPS 0.1 to 0.3 0.7 to 1.1
D CASE SIZE
AVX TPS 0.1 to 0.3 0.7 to 1.1
C CASE SIZE
AVX TPS 0.2 0.5
Many engineers have heard that solid tantalum capacitors
are prone to failure if they undergo high surge currents.
This is historically true and type TPS capacitors are
specially tested for surge capability but surge ruggedness
is not a critical issue with the output capacitor. Solid
tantalum capacitors fail during very high turn-on surges
which do not occur at the output of regulators. High
discharge surges, such as when the regulator output is
dead shorted, do not harm the capacitors.
Unlike the input capacitor RMS, ripple current in the
output capacitor is normally low enough that ripple cur-
rent rating is not an issue. The current waveform is
triangular with a typical value of 200mA
RMS
. The formula
to calculate this is:
Output capacitor ripple current (RMS)
I
VVV
LfV
RIPPLE RMS
OUT IN OUT
IN
()
.–
=
()( )
()()( )
=
029
12
I
P-P
CERAMIC CAPACITORS
Higher value, lower cost ceramic capacitors are now
becoming available. They are generally chosen for their
good high frequency operation, small size and very low
ESR (effective series resistance). Low ESR reduces output
ripple voltage but also removes a useful zero in the loop
frequency response, common to tantalum capacitors. To
compensate for this a resistor R
C
can be placed in series
with the V
C
compensation capacitor C
C
(Figure 10). Care
must be taken however since this resistor sets the high
frequency gain of the error amplifier including the gain at
the switching frequency. If the gain of the error amplifier
is high enough at the switching frequency output ripple
voltage (although smaller for a ceramic output capacitor)
may still affect the proper operation of the regulator. A
LT1976/LT1976B
15
1976bfg
APPLICATIO S I FOR ATIO
WUUU
Example: with V
IN
= 12V, V
OUT
= 3.3V, L = 33μH, ESR =
0.08Ω, ESL = 10nH:
I
P-P
=
()( )
()
()()
=
==
33 12 33
12 33 6 200 3
0 362
12
33 5
363 5
.–.
.
.–
.
ee
A
di
dt e
e
V
RIPPLE
= (0.362A)(0.08) + (10e – 9)(363e3)
= 0.0289 + 0.003 = 32mV
P-P
MAXIMUM OUTPUT LOAD CURRENT
Maximum load current for a buck converter is limited by
the maximum switch current rating (I
PK
). The current
rating for the LT1976 is 1.5A. Unlike most current mode
converters, the LT1976 maximum switch current limit
does not fall off at high duty cycles. Most current mode
converters suffer a drop off of peak switch current for duty
cycles above 50%. This is due to the effects of slope
compensation required to prevent subharmonic oscilla-
tions in current mode converters. (For detailed analysis,
see Application Note 19.)
The LT1976 is able to maintain peak switch current limit
over the full duty cycle range by using patented circuitry to
cancel the effects of slope compensation on peak switch
current without affecting the frequency compensation it
provides.
Maximum load current would be equal to maximum
switch current for an infinitely large inductor, but with
finite inductor size, maximum load current is reduced by
one-half peak-to-peak inductor current. The following
formula assumes continuous mode operation, implying
that the term on the right (I
P-P
/2) is less than I
OUT
.
II
VVV
LfV
I
I
OUT MAX PK
OUT IN OUT
IN
PK
P
()
=
()( )
()()( )
=
2
-P
2
Discontinuous operation occurs when:
I
VVV
LfV
OUT DIS
OUT IN OUT
IN
()
()()( )
()
2
For V
OUT
= 5V, V
IN
= 8V and L = 20μH:
I
ee
A
OUT MAX()
.–
.–. .
=
()( )
()()()
==
15
58 5
2 20 6 200 3 8
15 024 126
Note that there is less load current available at the higher
input voltage because inductor ripple current increases. At
V
IN
= 15V, duty cycle is 33% and for the same set of
conditions:
I
ee
A
OUT MAX()
.–
.–. .
=
()( )
()()()
==
15
515 5
2 20 6 200 3 15
15 042 108
To calculate actual peak switch current in continuous
mode with a given set of conditions, use:
II
VVV
LfV
SW PK OUT
OUT IN OUT
IN
()
=+
()
()()( )
2
If a small inductor is chosen which results in discontinous
mode operation over the entire load range, the maximum
load current is equal to:
I
IfLV
VVV
OUT MAX
PK IN
OUT IN OUT
()
=
()()( )
()( )
2
2
2
CHOOSING THE INDUCTOR
For most applications the output inductor will fall in the
range of 15μH to 100μH. Lower values are chosen to
reduce physical size of the inductor. Higher values allow
more output current because they reduce peak current
seen by the LT1976 switch, which has a 1.5A limit. Higher
values also reduce output ripple voltage and reduce core
loss.
When choosing an inductor you might have to consider
maximum load current, core and copper losses, allow-
able component height, output voltage ripple, EMI, fault
current in the inductor, saturation and of course cost.
The following procedure is suggested as a way of han-
dling these somewhat complicated and conflicting
requirements.

LT1976EFE#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators 1.5A, 200kHz uP HV Step-down Converter
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union