7
LTC2404/LTC2408
RMS Noise vs Reference Voltage Offset Error vs V
CC
Offset Error vs TemperatureNoise Histogram
Full-Scale Error vs Temperature
Full-Scale Error
vs Reference Voltage
RMS Noise vs CODE OUT
Full-Scale Error vs V
CC
RMS Noise vs V
CC
TYPICAL PERFOR A CE CHARACTERISTICS
UW
REFERENCE VOLTAGE (V)
0
RMS NOISE (ppm OF V
REF
)
10
15
4
24048 G10
5
0
1
2
3
5
20
V
CC
= 5V
T
A
= 25°C
V
CC
2.7
5.0
OFFSET ERROR (ppm)
2.5
0
2.5
5.0
3.2 3.7 4.2 4.7
24048 G11
5.2
V
REF
= 2.5V
T
A
= 25°C
V
CC
2.7
RMS NOISE (ppm)
0
2.5
5.0
3.2 3.7 4.2 4.7
24048 G12
5.2
V
REF
= 2.5V
T
A
= 25°C
OUTPUT CODE (ppm)
0
NUMBER OF READINGS
500
1000
1500
V
CC
= 5V
V
REF
= 5V
V
IN
= 0V
0.5 0 0.5 1.0
24048 G13
1.5–1.0
CODE OUT (HEX)
0
RMS NOISE (ppm)
0.50
0.75
FFFFFF
24048 G14
0.25
0
7FFFFF
1.00
V
CC
= 5V
V
REF
= 5V
V
IN
= –0.3V TO 5.3V
T
A
= 25°C
TEMPERATURE (°C)
–50
5.0
OFFSET ERROR (ppm)
2.5
0
2.5
5.0
25 0 25 50
24048 G15
75 100 125
V
CC
= 5V
V
REF
= 5V
V
IN
= 0V
TEMPERATURE (°C)
–50
5.0
FULL-SCALE ERROR (ppm)
2.5
0
2.5
5.0
25 0 25 50
24048 G16
75 100 125
V
CC
= 5V
V
REF
= 5V
V
IN
= 5V
REFERENCE VOLTAGE (V)
0
FULL-SCALE ERROR (ppm)
5.0
7.5
4
24048 G17
2.5
0
1
2
3
5
10.0
V
CC
= 5V
V
IN
= V
REF
V
CC
2.7
0
FULL-SCALE ERROR (ppm)
2
1
3
5
4
6
3.2 3.7 4.2 4.7
24048 G18
5.2
V
REF
= 2.5V
V
IN
= 2.5V
T
A
= 25°C
8
LTC2404/LTC2408
Conversion Current vs Temperature
Sleep Current vs Temperature
PSRR vs Frequency at V
CC
PSRR vs Frequency at V
CC
PSRR vs Frequency at V
CC
Rejection vs Frequency at V
IN
Rejection vs Frequency at V
IN
Rejection vs Frequency at V
IN
TEMPERATURE (°C)
–50
SUPPLY CURRENT (µA)
20
25
30
25 75
24048 G20
15
10
–25 0
50 100 125
5
0
V
CC
= 5.5V
V
CC
= 2.7V
FREQUENCY AT V
CC
(Hz)
1
–120
REJECTION (dB)
–100
–80
–60
–40
–20
0
100 10k 1M
24048 G21
V
CC
= 4.1V
V
IN
= 0V
T
A
= 25°C
F
O
= 0
15,360Hz 153,600Hz
FREQUENCY AT V
CC
(Hz)
0
130
REJECTION (dB)
110
–90
–70
–50
–30
–10
50 100 150 200
24048 G22
250
V
CC
= 4.1V
V
IN
= 0V
T
A
= 25°C
F
0
= 0
FREQUENCY AT V
CC
(Hz)
15200
120
REJECTION (dB)
100
–80
–60
–40
0
15250
15300 15350 15400
24048 G23
15450 15500
–20
V
CC
= 4.1V
V
IN
= 0V
T
A
= 25°C
F
O
= 0
FREQUENCY AT V
IN
(Hz)
1
120
REJECTION (dB)
100
–80
–60
–40
–20
0
50 100 150 200
24048 G24
250
V
CC
= 5V
V
REF
= 5V
V
IN
= 2.5V
F
O
= 0
INPUT FREQUENCY DEVIATION FROM NOTCH FREQUENCY (%)
128404812
REJECTION (dB)
24048 G25
–60
–70
–80
–90
100
110
120
130
140
FREQUENCY AT V
IN
(Hz)
15100
120
REJECTION (dB)
100
–80
–60
–40
–20
0
15200 15300 15400 15500
24048 G26
V
CC
= 5V
V
REF
= 5V
V
IN
= 2.5V
F
O
= 0
SAMPLE RATE = 15.36kHz ±2%
TEMPERATURE (°C)
–50
SUPPLY CURRENT (µA)
220
25
24048 G19
190
170
–25 0 50
160
150
230
210
200
180
75 100 125
V
CC
= 5.5V
V
CC
= 4.1V
V
CC
= 2.7V
TYPICAL PERFOR A CE CHARACTERISTICS
UW
Rejection vs Frequency at V
IN
INPUT FREQUENCY
0
–60
–40
0
24048 F23
–80
100
f
S
/2 f
S
120
140
–20
REJECTION (dB)
9
LTC2404/LTC2408
INL vs Maximum Output Rate
Resolution vs Maximum
Output Rate
TYPICAL PERFOR A CE CHARACTERISTICS
UW
PIN FUNCTIONS
UU
U
MAXIMUM OUTPUT RATE (Hz)
0
INL (BITS)
12
18
20
60
24048 G27
10
8
15 20 25105 303540455055
24
22
16
14
V
CC
= 5V
V
REF
= 5V
F
0
= EXTERNAL
(20480 × MAXIMUM
OUTPUT RATE)
T
A
= 25°C
T
A
= 90°C
MAXIMUM OUTPUT RATE (Hz)
0
RESOLUTION (BITS)*
12
18
20
60
24048 G28
10
8
15 20 25105 303540455055
24
22
16
14
F
O
= EXTERNAL
(20480 × MAXIMUM
OUTPUT RATE)
T
A
= 25°C
T
A
= 90°C
*RESOLUTION =
LOG(V
REF
/RMS NOISE)
LOG (2)
V
CC
= V
REF
= 5V
V
CC
= V
REF
= 3V
GND (Pins 1, 5, 6, 16, 18, 22, 27, 28): Ground. Should be
connected directly to a ground plane through a minimum
length trace or it should be the single-point-ground in a
single point grounding system.
V
CC
(Pins 2, 8): Positive Supply Voltage. 2.7V V
CC
5.5V. Bypass to GND with a 10µF tantalum capacitor in
parallel with 0.1µF ceramic capacitor as close to the part
as possible.
V
REF
(Pin 3): Reference Input. The reference voltage range
is 0.1V to V
CC
.
ADCIN (Pin 4): Analog Input. The input voltage range is
0.125 • V
REF
to 1.125 • V
REF
. For V
REF
> 2.5V the input
voltage range may be limited by the pin absolute maxi-
mum rating of –0.3V to V
CC
+ 0.3V.
MUXOUT (Pin 7): MUX Output. This pin is the output of the
multiplexer. Tie to ADCIN for normal operation.
CH0 (Pin 9): Analog Multiplexer Input.
CH1 (Pin 10): Analog Multiplexer Input.
CH2 (Pin 11): Analog Multiplexer Input.
CH3 (Pin 12): Analog Multiplexer Input.
CH4 (Pin 13): Analog Multiplexer Input. No connect on the
LTC2404.
CH5 (Pin 14): Analog Multiplexer Input. No connect on the
LTC2404.
CH6 (Pin 15): Analog Multiplexer Input. No connect on the
LTC2404.
CH7 (Pin 17): Analog Multiplexer Input. No connect on the
LTC2404.
CLK (Pin 19): Shift Clock for Data In. This clock synchro-
nizes the serial data transfer into the MUX. For normal
operation, drive this pin in parallel with SCK.
CSMUX (Pin 20): MUX Chip Select Input. A logic high on
this input allows the MUX to receive a channel address. A
logic low enables the selected MUX channel and connects
it to the MUXOUT pin for A/D conversion. For normal
operation, drive this pin in parallel with CSADC.
D
IN
(Pin 21): Digital Data Input. The multiplexer address
is shifted into this input on the last four rising CLK edges
before CSMUX goes low.
CSADC (Pin 23): ADC Chip Select Input. A low on this pin
enables the SDO digital output and following each conver-
sion, the ADC automatically enters the Sleep mode and
remains in this low power state as long as CSADC is high.
A high on this pin also disables the SDO digital output. A
low-to-high transition on CSADC during the Data Output

LTC2404IG#TRPBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC 24-Bit Power 4/Ch Delta-Sigma ADC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union