10©2016 Integrated Device Technology, Inc Revision A April 11, 2016
840S05I Data Sheet
Parameter Measurement Information, continued
Output Duty Cycle/Pulse Width/Period
Applications Information
Recommendations for Unused Input and Output Pins
Inputs:
LVCMOS Control Pins
All control pins have internal pullups or pulldowns; additional
resistance is not required but can be added for additional protection.
A 1k resistor can be used.
Crystal Inputs
For applications not requiring the use of the crystal oscillator input,
both XTAL_IN and XTAL_OUT can be left floating. Though not
required, but for additional protection, a 1k resistor can be tied
from XTAL_IN to ground.
REF_IN Input
For applications not requiring the use of the reference clock, it can
be left floating. Though not required, but for additional protection, a
1k resistor can be tied from the REF_IN to ground.
Outputs:
LVCMOS Outputs
All unused LVCMOS outputs can be left floating. There should be no
trace attached.
t
PERIOD
t
PW
t
PERIOD
odc =
V
DDO_X
2
x 100%
t
PW
QA[1:0],
QB[1:0]
11©2016 Integrated Device Technology, Inc Revision A April 11, 2016
840S05I Data Sheet
Overdriving the XTAL Interface
The XTAL_IN input can be overdriven by an LVCMOS driver or by
one side of a differential driver through an AC coupling capacitor. The
XTAL_OUT pin can be left floating. The amplitude of the input signal
should be between 500mV and 1.8V and the slew rate should not be
less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be
reduced from full swing to at least half the swing in order to prevent
signal interference with the power rail and to reduce internal noise.
Figure 1A shows an example of the interface diagram for a high
speed 3.3V LVCMOS driver. This configuration requires that the sum
of the output impedance of the driver (Ro) and the series resistance
(Rs) equals the transmission line impedance. In addition, matched
termination at the crystal input will attenuate the signal in half. This
can be done in one of two ways. First, R1 and R2 in parallel should
equal the transmission line impedance. For most 50
applications,
R1 and R2 can be 100
. This can also be accomplished by removing
R1 and changing R2 to 50. The values of the resistors can be
increased to reduce the loading for a slower and weaker LVCMOS
driver. Figure 1B shows an example of the interface diagram for an
LVPECL driver. This is a standard LVPECL termination with one side
of the driver feeding the XTAL_IN input. It is recommended that all
components in the schematics be placed in the layout. Though some
components might not be used, they can be utilized for debugging
purposes. The datasheet specifications are characterized and
guaranteed by using a quartz crystal as the input.
Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface
Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface
VCC
XTAL_OUT
XTAL_IN
R1
100
R2
100
Zo = 50 ohmsRs
Ro
Zo = Ro + Rs
C1
.1uf
LVCMOS Driver
XTA L_ OU T
XTA L_ I N
Zo = 50 ohms
C2
.1uf
LVPECL Driver
Zo = 50 ohms
R1
50
R2
50
R3
50
12©2016 Integrated Device Technology, Inc Revision A April 11, 2016
840S05I Data Sheet
EPAD Thermal Release Path
In order to maximize both the removal of heat from the package and
the electrical performance, a land pattern must be incorporated on
the Printed Circuit Board (PCB) within the footprint of the package
corresponding to the exposed metal pad or exposed heat slug on the
package, as shown in Figure 2. The solderable area on the PCB, as
defined by the solder mask, should be at least the same size/shape
as the exposed pad/slug area on the package to maximize the
thermal/electrical performance. Sufficient clearance should be
designed on the PCB between the outer edges of the land pattern
and the inner edges of pad pattern for the leads to avoid any shorts.
While the land pattern on the PCB provides a means of heat transfer
and electrical grounding from the package to the board through a
solder joint, thermal vias are necessary to effectively conduct from
the surface of the PCB to the ground plane(s). The land pattern must
be connected to ground through these vias. The vias act as “heat
pipes”. The number of vias (i.e. “heat pipes”) are application specific
and dependent upon the package power dissipation as well as
electrical conductivity requirements. Thus, thermal and electrical
analysis and/or testing are recommended to determine the minimum
number needed. Maximum thermal and electrical performance is
achieved when an array of vias is incorporated in the land pattern. It
is recommended to use as many vias connected to ground as
possible. It is also recommended that the via diameter should be 12
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is
desirable to avoid any solder wicking inside the via during the
soldering process which may result in voids in solder between the
exposed pad/slug and the thermal land. Precautions should be taken
to eliminate any solder voids between the exposed heat slug and the
land pattern. Note: These recommendations are to be used as a
guideline only. For further information, refer to the Application Note
on the Surface Mount Assembly of Amkor’s Thermally/Electrically
Enhance Leadframe Base Package, Amkor Technology.
Figure 2. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)
GROUND PLANE
LAND PATTERN
SOLDER
THERMAL VIA
EXPOSED HEAT SLUG
(GROUND PAD)
PIN
PIN PAD
SOLDER
PIN
PIN PAD
SOLDER

840S05AYILF

Mfr. #:
Manufacturer:
IDT
Description:
Clock Synthesizer / Jitter Cleaner Crystal LVCMOS LVTTL Freq Synth
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet