MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–MAX1314
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs
with ±10V, ±5V, and 0 to +5V Analog Input Ranges
28 ______________________________________________________________________________________
Bipolar ±5V Devices
Table 6 and Figure 13 show the two’s complement trans-
fer function for the ±5V input range MAX1308/MAX1309/
MAX1310. The FSR is four times the voltage at REF. The
internal +2.5V reference gives a +10V FSR, while an
external +2V to +3V reference allows an FSR of +8V to
+12V respectively. Calculate the LSB size using:
which equals 2.44mV when using a 2.5V reference.
The input range is centered about V
MSV
. Normally,
MSV = AGND, and the input is symmetrical about zero.
For a custom midscale voltage, drive MSV with an
external voltage source. Noise present on MSV directly
couples into the ADC result. Use a precision, low-drift
voltage reference with adequate bypassing to prevent
MSV from degrading ADC performance. For maximum
FSR, do not violate the absolute maximum voltage rat-
ings of the analog inputs when choosing MSV.
Determine the input voltage as a function of V
REF
,
V
MSV
, and the output code in decimal using:
V
CH_
= LSB x CODE
10
+ V
MSV
1
4
2
12
LSB
xV
REF
=
Table 6. ±5V Bipolar Code Table
TWO’s
COMPLEMENT
DIGITAL OUTPUT
CODE
DECIMAL
EQUIVALENT
DIGITAL OUTPUT
CODE
(CODE
10
)
INPUT VOLTAGE
(V)
V
REF
= +2.5V
V
MSV
= 0V
0111 1111 1111 =
0x7FF
+2047 +4.9988 ±0.5 LSB
0111 1111 1110 =
0x7FE
+2046 +4.9963 ±0.5 LSB
0000 0000 0001 =
0x001
+1 +0.0037 ±0.5 LSB
0000 0000 0000 =
0x000
0 +0.0012 ±0.5 LSB
1111 1111 1111 =
0xFFF
-1 -0.0012 ±0.5 LSB
1000 0000 0001 =
0x801
-2047 -4.9963 ±0.5 LSB
1000 0000 0000 =
0x800
-2048 -4.9988 ±0.5 LSB
()
4 x V
REF
4 x V
REF
2
12
1 LSB =
TWO'S COMPLEMENT BINARY OUTPUT CODE
-2048 -2046 +2047+2045
0x800
0x801
0x802
0x803
0x7FF
0x7FE
0x7FD
0x7FC
0xFFF
0x000
0x001
-1 0 +1
(MSV)
INPUT VOLTAGE (V
CH_
- V
MSV
IN LSBs)
Figure 13. ±5V Bipolar Transfer Function
MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–MAX1314
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs
with ±10V, ±5V, and 0 to +5V Analog Input Ranges
______________________________________________________________________________________ 29
Bipolar ±10V Devices
Table 7 and Figure 14 show the two’s complement trans-
fer function for the ±10V input range MAX1312/
MAX1313/MAX1314. The FSR is eight times the voltage at
REF. The internal +2.5V reference gives a +20V FSR,
while an external +2V to +3V reference allows an FSR of
+16V to +24V, respectively. Calculate the LSB size using:
which equals 4.88mV with a +2.5V reference.
The input range is centered about V
MSV
. Normally,
MSV = AGND, and the input is symmetrical about zero.
For a custom midscale voltage, drive MSV with an
external voltage source. Noise present on MSV directly
couples into the ADC result. Use a precision, low-drift
voltage reference with adequate bypassing to prevent
MSV from degrading ADC performance. For maximum
FSR, do not violate the absolute maximum voltage rat-
ings of the analog inputs when choosing MSV.
Determine the input voltage as a function of V
REF
,
V
MSV
, and the output code in decimal using:
V
CH_
= LSB x CODE
10
+ V
MSV
1
8
2
12
LSB
xV
REF
=
Table 7. ±10V Bipolar Code Table
TWO’s
COMPLEMENT
DIGITAL OUTPUT
CODE
DECIMAL
EQUIVALENT
DIGITAL OUTPUT
CODE
(CODE
10
)
INPUT VOLTAGE
(V)
V
REF
= +2.5V
V
MSV
= 0V
0111 1111 1111 =
0x7FF
+2047 +9.9976 ±0.5 LSB
0111 1111 1110 =
0x7FE
+2046 +9.9927 ±0.5 LSB
0000 0000 0001 =
0x001
+1 +0.0073 ±0.5 LSB
0000 0000 0000 =
0x000
0 0.0024 ±0.5 LSB
1111 1111 1111 =
0xFFF
-1 -0.0024 ±0.5 LSB
1000 0000 0001 =
0x801
-2047 -9.9927 ±0.5 LSB
1000 0000 0000 =
0x800
-2048 -9.9976 ±0.5 LSB
()
8 x V
REF
8 x V
REF
2
12
1 LSB =
TWO'S COMPLEMENT BINARY OUTPUT CODE
-2048 -2046 +2047+2045
0x800
0x801
0x802
0x803
0x7FF
0x7FE
0x7FD
0x7FC
0xFFF
0x000
0x001
-1 0 +1
(MSV)
INPUT VOLTAGE (V
CH_
- V
MSV
IN LSBs)
Figure 14. ±10V Bipolar Transfer Function
MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–MAX1314
8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs
with ±10V, ±5V, and 0 to +5V Analog Input Ranges
30 ______________________________________________________________________________________
3-Phase Motor Controller
The MAX1304–MAX1306/MAX1308–MAX1310/MAX1312–
MAX1314 are ideally suited for motor-control systems
(Figure 15). The devices’ simultaneously sampled
inputs eliminate the need for complicated DSP algo-
rithms that realign sequentially sampled data into a
simultaneous sample set. Additionally, the variety of
input voltage ranges allows for flexibility when choosing
current sensors and position encoders.
12-BIT
ADC
DSP
CURRENT
SENSOR
I
PHASE1
PHASE 1
PHASE 2
PHASE 3
3-PHASE ELECTRIC MOTOR
POSITION
ENCODER
I
PHASE3
I
PHASE2
IGBT CURRENT DRIVERS
T/H
MAX1308
Figure 15. 3-Phase Motor Control

MAX1304ECM+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Analog to Digital Converters - ADC 12-Bit 8Ch 1.075Msps 3V Precision ADC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union