REV. F–18–
AD7712
The AD7712 also provides the facility to write to the on-chip
calibration registers, and, in this manner, the span and offset for
the part can be adjusted by the user. The offset calibration regis-
ter contains a value that is subtracted from all conversion
results, while the full-scale calibration register contains a value
that is multiplied by all conversion results. The offset calibration
coefficient is subtracted from the result prior to the multiplication
by the full-scale coefficient. In the first three modes outlined
here, the DRDY line indicates that calibration is complete by
going low. If DRDY is low before (or goes low during) the
calibration command, it may take up to one modulator cycle
before DRDY goes high to indicate that calibration is in progress.
Therefore, the DRDY line should be ignored for up to one
modulator cycle after the last bit of the calibration command is
written to the control register.
Self-Calibration
In the self-calibration mode with a unipolar input range, the
zero-scale point used in determining the calibration coefficients
is with both inputs shorted (i.e., AIN1(+) = AIN1(–) = V
BIAS
for AIN1 and AIN2 = V
BIAS
for AIN2 ) and the full-scale point
is V
REF
. The zero-scale coefficient is determined by converting
an internal shorted inputs node. The full-scale coefficient is
determined from the span between this shorted inputs conversion
and a conversion on an internal V
REF
node. The self-calibra-
tion mode is invoked by writing the appropriate values (0, 0, 1)
to the MD2, MD1, and MD0 bits of the control register. In this
calibration mode, the shorted inputs node is switched in to the
modulator first and a conversion is performed; the V
REF
node is
then switched in, and another conversion is performed. When
the calibration sequence is complete, the calibration coefficients
updated and the filter resettled to the analog input voltage, the
DRDY output goes low. The self-calibration procedure takes
into account the selected gain on the PGA.
For bipolar input ranges in the self-calibrating mode, the
sequence is very similar to that just outlined. In this case, the
two points that the AD7712 calibrates are midscale (bipolar
zero) and positive full scale.
System Calibration
System calibration allows the AD7712 to compensate for system
gain and offset errors as well as its own internal errors. System
calibration performs the same slope factor calculations as self-
calibration but uses voltage values presented by the system to
the AIN inputs for the zero-scale and full-scale points. System
calibration is a two-step process. The zero-scale point must be
presented to the converter first. It must be applied to the con-
verter before the calibration step is initiated and remain stable
until the step is complete. System calibration is initiated by
writing the appropriate values (0, 1, 0) to the MD2, MD1, and
MD0 bits of the control register. The DRDY output from the
device will signal when the step is complete by going low. After
the zero-scale point is calibrated, the full-scale point is applied
and the second step of the calibration process is initiated by
again writing the appropriate values (0, 1, 1) to MD2, MD1,
and MD0. Again the full-scale voltage must be set up before the
calibration is initiated, and it must remain stable throughout the
calibration step. DRDY goes low at the end of this second step
to indicate that the system calibration is complete. In the
unipolar mode, the system calibration is performed between the
two endpoints of the transfer function; in the bipolar mode, it is
performed between midscale and positive full scale.
This two-step system calibration mode offers another feature.
After the sequence has been completed, additional offset or gain
calibrations can be performed by themselves to adjust the zero
reference point or the system gain. This is achieved by perform-
ing the first step of the system calibration sequence (by writing
0, 1, 0 to MD2, MD1, MD0). This will adjust the zero-scale or
offset point but will not change the slope factor from what was
set during a full system calibration sequence.
System calibration can also be used to remove any errors from
an antialiasing filter on the analog input. A simple R, C anti-
aliasing filter on the front end may introduce a gain error on the
analog input voltage but the system calibration can be used to
remove this error.
System Offset Calibration
System offset calibration is a variation of both the system cali-
bration and self-calibration. In this case, the zero-scale point
for the system is presented to the AIN input of the converter.
System offset calibration is initiated by writing 1, 0, 0 to MD2,
MD1, MD0. The system zero-scale coefficient is determined by
converting the voltage applied to the AIN input, while the full-
scale coefficient is determined from the span between this AIN
conversion and a conversion on V
REF
. The zero-scale point
should be applied to the AIN input for the duration of the cali-
bration sequence. This is a one-step calibration sequence with
DRDY going low when the sequence is completed. In the uni-
polar mode, the system offset calibration is performed between
the two endpoints of the transfer function; in the bipolar mode,
it is performed between midscale and positive full scale.
Background Calibration
The AD7712 also offers a background calibration mode where
the part interleaves its calibration procedure with its normal
conversion sequence. In the background calibration mode, the
same voltages used as the calibration points in the self-calibration
mode are used, i.e., shorted inputs and V
REF
. The background
calibration mode is invoked by writing 1, 0, 1 to MD2, MD1,
MD0 of the control register. When invoked, the background
calibration mode reduces the output data rate of the AD7712 by
a factor of 6, while the –3 dB bandwidth remains unchanged. Its
advantage is that the part is continually performing calibration
and automatically updating its calibration coefficients. As a
result, the effects of temperature drift, supply sensitivity, and
time drift on zero-scale and full-scale errors are automatically
removed. When the background calibration mode is turned on,
the part will remain in this mode until bits MD2, MD1, and
MD0 of the control register are changed. With background
calibration mode on, the first result from the AD7712 will be
incorrect as the full-scale calibration will not have been per-
formed. For a step change on the input, the second output
update will have settled to 100% of the final value.
Table VI summarizes the calibration modes and the calibration
points associated with them. It also gives the duration from
when the calibration is invoked to when valid data is available to
the user.
REV. F
AD7712
–19–
Table VI. Calibration Truth Table
Cal Type MD2, MD1, MD0 Zero-Scale Cal Full-Scale Cal Sequence Duration
Self-Cal 0, 0, 1 Shorted Inputs V
REF
One-Step 9 1/Output Rate
System Cal 0, 1, 0 AIN Two-Step 4 1/Output Rate
System Cal 0, 1, 1 AIN Two-Step 4 1/Output Rate
System Offset Cal 1, 0, 0 AIN V
REF
One-Step 9 1/Output Rate
Background Cal 1, 0, 1 Shorted Inputs V
REF
One-Step 6 1/Output Rate
Span and Offset Limits
Whenever a system calibration mode is used, there are limits on
the amount of offset and span that can be accommodated. The
range of input span in both the unipolar and bipolar modes for
AIN1 has a minimum value of 0.8 V
REF
/GAIN and a maxi-
mum value of 2.1 V
REF
/GAIN. For AIN2, both numbers are
a factor of 4 higher.
The amount of offset that can be accommodated depends on
whether the unipolar or bipolar mode is being used. This offset
range is limited by the requirement that the positive full-scale
calibration limit is 1.05 V
REF
/GAIN for AIN1. Therefore,
the offset range plus the span range cannot exceed 1.05 V
REF
/
GAIN for AIN1. If the span is at its minimum (0.8 V
REF
/
GAIN), the maximum the offset can be is (0.25 V
REF
/GAIN)
for AIN1. For AIN2, both ranges are multiplied by a factor of 4.
In the bipolar mode, the system offset calibration range is again
restricted by the span range. The span range of the converter in
bipolar mode is equidistant around the voltage used for the
zero-scale point, thus the offset range plus half the span range
cannot exceed (1.05 × V
REF
/GAIN) for AIN1. If the span is
set to 2 × V
REF
/GAIN, the offset span cannot move more than
±(0.05 × V
REF
/GAIN) before the endpoints of the transfer func-
tion exceed the input overrange limits ±(1.05 × V
REF
/GAIN) for
AIN1. If the span range is set to the minimum ±(0.4 × V
REF
/
GAIN), the maximum
allowable offset range is ±(0.65
× V
REF
/
GAIN) for AIN1. Once again, for AIN2, both ranges are
multiplied by a factor of 4.
POWER-UP AND CALIBRATION
On power-up, the AD7712 performs an internal reset, which
sets the contents of the control register to a known state. How-
ever, to ensure correct calibration for the device, a calibration
routine should be performed after power-up.
The power dissipation and temperature drift of the AD7712 are
low and no warm-up time is required before the initial calibra-
tion is performed. However, if an external reference is being
used, this reference must have stabilized before calibration is
initiated.
Drift Considerations
The AD7712 uses chopper stabilization techniques to minimize
input offset drift. Charge injection in the analog switches and dc
leakage currents at the sampling node are the primary sources of
offset voltage drift in the converter. The dc input leakage cur-
rent is essentially independent of the selected gain. Gain drift
within the converter depends primarily upon the temperature
tracking of the internal capacitors. It is not affected by leakage
currents.
Measurement errors due to offset drift or gain drift can be elimi-
nated at any time by recalibrating the converter or by operating
the part in the background calibration mode. Using the system
calibration mode can also minimize offset and gain errors in the
signal conditioning circuitry. Integral and differential linearity
errors are not significantly affected by temperature changes.
POWER SUPPLIES AND GROUNDING
Since the analog inputs and reference input are differential,
most of the voltages in the analog modulator are common-mode
voltages. V
BIAS
provides the return path for most of the analog
currents flowing in the analog modulator. As a result, the V
BIAS
input should be driven from a low impedance to minimize
errors due to charging/discharging impedances on this line.
When the internal reference is used as the reference source for
the part, AGND is the ground return for this reference voltage.
The analog and digital supplies to the AD7712 are independent
and separately pinned out to minimize coupling between the
analog and digital sections of the device. The digital filter will
provide rejection of broadband noise on the power supplies,
except at integer multiples of the modulator sampling frequency.
The digital supply (DV
DD
) must not exceed the analog positive
supply (AV
DD
) by more than 0.3 V in normal operation. If sepa-
rate analog and digital supplies are used, the decoupling scheme
shown in Figure 10 is recommended. In systems where AV
DD
=
5 V and DV
DD
= 5 V, it is recommended that AV
DD
and DV
DD
are driven from the same 5 V supply, although each supply
should be decoupled separately as shown in Figure 10. It is
preferable that the common supply is the system’s analog
5 V supply.
It is also important that power is applied to the AD7712 before
signals at REF IN, AIN, or the logic input pins in order to avoid
excessive current. If separate supplies are used for the AD7712
and the system digital circuitry, then the AD7712 should be
powered up first. If it is not possible to guarantee this, then
current limiting resistors should be placed in series with the
logic inputs.
AD7712
0.1F
0.1F
10F
ANALOG
SUPPLY
DIGITAL 5V
SUPPLY
AV
DD
DV
DD
Figure 10. Recommended Decoupling Scheme
REV. F–20–
AD7712
DIGITAL INTERFACE
The AD7712’s serial communications port provides a flexible
arrangement to allow easy interfacing to industry-standard
microprocessors, microcontrollers, and digital signal processors.
A serial read to the AD7712 can access data from the output
register, the control register, or the calibration registers. A serial
write to the AD7712 can write data to the control register or the
calibration registers.
Two different modes of operation are available, optimized for
different types of interfaces where the AD7712 can act either as
master in the system (it provides the serial clock) or as slave (an
external serial clock can be provided to the AD7712). These
two modes, labeled self-clocking mode and external clocking
mode, are discussed in detail in the following sections.
Self-Clocking Mode
The AD7712 is configured for its self-clocking mode by tying
the MODE pin high. In this mode, the AD7712 provides the
serial clock signal used for the transfer of data to and from the
AD7712. This self-clocking mode can be used with processors
that allow an external device to clock their serial port, including
most digital signal processors and microcontrollers such as the
68HC11 and 68HC05. It also allows easy interfacing to serial
parallel conversion circuits in systems with parallel data com-
munication, allowing interfacing to 74XX299 universal shift
registers without any additional decoding. In the case of shift
registers, the serial clock line should have a pull-down resistor
instead of the pull-up resistor shown in Figures 11 and 12.
Read Operation
Data can be read from the output register, the control register, or
the calibration registers. A0 determines whether the data read
accesses data from the control register or from the output/calibra-
tion registers. This A0 signal must remain valid for the duration
of the serial read operation. With A0 high, data is accessed from
either the output register or from the calibration registers. With
A0 low, data is accessed from the control register.
The function of the DRDY line is dependent on only the output
update rate of the device and the reading of the output data
register. DRDY goes low when a new data-word is available in
the output data register. It is reset high when the last bit of data
(either 16th bit or 24th bit) is read from the output register. If
data is not read from the output register, the DRDY line will
remain low. The output register will continue to be updated at
the output update rate, but DRDY will not indicate this. A read
from the device in this circumstance will access the most recent
word in the output register. If a new data-word becomes avail-
able to the output register while data is being read from the
output register, DRDY will not indicate this and the new data-
word will be lost to the user. DRDY is not affected by reading
from the control register or the calibration registers.
Data can be accessed from the output data register only when
DRDY is low. If RFS goes low with DRDY high, no data trans-
fer will take place. DRDY does not have any effect on reading
data from the control register or from the calibration registers.
Figure 11 shows a timing diagram for reading from the AD7712
in the self-clocking mode. This read operation shows a read
from the AD7712’s output data register. A read from the con-
trol register or calibration registers is similar, but, in these cases,
the DRDY line is not related to the read function. Depending
on the output update rate, it can go low at any stage in the
control/calibration register read cycle without affecting the read
and its status should be ignored. A read operation from either
the control or calibration registers must always read 24 bits of
data from the respective register.
Figure 11 shows a read operation from the AD7712. For the
timing diagram shown, it is assumed that there is a pull-up
resistor on the SCLK output. With DRDY low, the RFS input
is brought low. RFS going low enables the serial clock of the
AD7712 and also places the MSB of the word on the serial data
line. All subsequent data bits are clocked out on a high to low
transition of the serial clock and are valid prior to the following
rising edge of this clock. The final active falling edge of SCLK
clocks out the LSB, and this LSB is valid prior to the final active
rising edge of SCLK. Coincident with the next falling edge of
SCLK, DRDY is reset high. DRDY going high turns off the
SCLK and the SDATA outputs, which means that the data
hold time for the LSB is slightly shorter than for all other bits.
SDATA (O)
SCLK (O)
THREE-STATE
RFS (I)
A0 (I)
DRDY (O)
MSB LSB
t
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
t
10
Figure 11. Self-Clocking Mode, Output Data Read Operation

AD7712ANZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC CMOS 24-Bit w/ 2 Analog Inpt Ch
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union