13
LTC3776
3776fa
OPERATIO
U
(Refer to Functional Diagram)
Figure 3. Example Waveforms for a Single Phase
Dual Controller vs the 2-Phase LTC3776
Single Phase
Dual Controller
2-Phase
Dual Controller
SW1 (V)
SW2 (V)
I
L1
I
L2
I
IN
3776 F03
The peak inductor current is determined by the peak sense
voltage and the on-resistance of the external P-channel
MOSFET:
I
V
R
PK
SENSE MAX
DS ON
=
Δ
()
()
Power Good (PGOOD) Pin
A window comparator monitors both feedback voltages
and the open-drain PGOOD output pin is pulled low when
either or both feedback voltages are not within ±10% of
their reference voltages. PGOOD is low when the LTC3776
is shut down or in undervoltage lockout.
2-Phase Operation
Why the need for 2-phase operation? Until recently, con-
stant frequency dual switching regulators operated both
controllers in phase (i.e., single phase operation). This
means that both topside MOSFETs (P-channel) are turned
on at the same time, causing current pulses of up to twice
the amplitude of those from a single regulator to be drawn
from the input capacitor. These large amplitude pulses
increase the total RMS current flowing in the input capaci-
tor, requiring the use of larger and more expensive input
capacitors, and increase both EMI and power losses in the
input capacitor and input power supply.
With 2-phase operation, the two controllers of the LTC3776
are operated 180 degrees out of phase. This effectively
interleaves the current pulses coming from the topside
MOSFET switches, greatly reducing the time where they
overlap and add together. The result is a significant
reduction in the total RMS current, which in turn allows the
use of smaller, less expensive input capacitors, reduces
shielding requirements for EMI and improves real world
operating efficiency.
Figure 3 shows qualitatively example waveforms for a
single phase dual controller versus a 2-phase LTC3776
system. In this case, 2.5V and 1.8V outputs, each drawing
a load current of 2A, are derived from a 7V (e.g., a 2-cell
Li-Ion battery) input supply. In this example, 2-phase
operation would reduce the RMS input capacitor current
from 1.79A
RMS
to 0.91A
RMS
. While this is an impressive
reduction by itself, remember that power losses are
proportional to I
RMS
2
, meaning that actual power wasted
is reduced by a factor of 3.86.
The reduced input ripple current also means that less
power is lost in the input power path, which could include
batteries, switches, trace/connector resistances, and pro-
tection circuitry. Improvements in both conducted and
radiated EMI also directly accrue as a result of the reduced
RMS input current and voltage. Significant cost and board
footprint savings are also realized by being able to use
smaller, less expensive, lower RMS current-rated input
capacitors.
Of course, the improvement afforded by 2-phase opera-
tion is a function of the relative duty cycles of the two
controllers, which in turn are dependent upon the input
supply voltage. Figure 4 depicts how the RMS input
current varies for single phase and 2-phase dual control-
lers with 2.5V and 1.8V outputs over a wide input voltage
range.
It can be readily seen that the advantages of 2-phase
operation are not limited to a narrow operating range, but
in fact extend over a wide region. A good rule of thumb for
most applications is that 2-phase operation will reduce the
input capacitor requirement to that for just one channel
operating at maximum current and 50% duty cycle.
14
LTC3776
3776fa
The typical LTC3776 application circuit is shown in
Figure 11. External component selection for each of the
LTC3776’s controllers is driven by the load requirement
and begins with the selection of the inductor (L) and the
power MOSFETs (MP and MN).
Power MOSFET Selection
Each of the LTC3776’s two controllers requires two exter-
nal power MOSFETs: a P-channel MOSFET for the topside
(main) switch and an N-channel MOSFET for the bottom
(synchronous) switch. Important parameters for the power
MOSFETs are the breakdown voltage V
BR(DSS)
, threshold
voltage V
GS(TH)
, on-resistance R
DS(ON)
, reverse transfer
capacitance C
RSS
, turn-off delay t
D(OFF)
and the total gate
charge Q
G
.
The gate drive voltage is the input supply voltage. Since the
LTC3776 is designed for operation down to low input
voltages, a sublogic level MOSFET (R
DS(ON)
guaranteed at
V
GS
= 2.5V) is required for applications that work close to
this voltage. When these MOSFETs are used, make sure
that the input supply to the LTC3776 is less than the abso-
lute maximum MOSFET V
GS
rating, which is typically 8V.
The P-channel MOSFET’s on-resistance is chosen based
on the required load current. The maximum average
output load current I
OUT(MAX)
is equal to the peak inductor
current minus half the peak-to-peak ripple current I
RIPPLE
.
The LTC3776’s current comparator monitors the drain-to-
source voltage V
DS
of the P-channel MOSFET, which is
sensed between the SENSE
+
and SW pins. The peak
inductor current is limited by the current threshold, set by
the voltage on the I
TH
pin of the current comparator. The
voltage on the I
TH
pin is internally clamped, which limits
the maximum current sense threshold ΔV
SENSE(MAX)
.
The output current that the LTC3776 can provide is given
by:
I
V
R
I
OUT MAX
SENSE MAX
DS ON
RIPPLE
()
()
()
=
Δ
2
A reasonable starting point is setting ripple current I
RIPPLE
to be 40% of I
OUT(MAX)
. Rearranging the above equation
yields:
R
V
I
DS ON MAX
SENSE MAX
OUT MAX
()( )
()
()
=
Δ
5
6
for Duty Cycle < 20%.
However, for operation above 20% duty cycle, slope
compensation has to be taken into consideration to select
the appropriate value of R
DS(ON)
to provide the required
amount of load current:
RSF
V
I
DS ON MAX
SENSE MAX
OUT MAX
()( )
()
()
••=
Δ
5
6
where SF is a scale factor whose value is obtained from the
curve in Figure 2.
These must be further derated to take into account the
significant variation in on-resistance with temperature.
The following equation is a good guide for determining the
required R
DS(ON)MAX
at 25°C (manufacturer’s specifica-
tion), allowing some margin for variations in the LTC3776
and external component values:
RSF
V
I
DS ON MAX
SENSE MAX
OUT MAX T
()( )
()
()
•.•
=
Δ
5
6
09
ρ
The ρ
T
is a normalizing term accounting for the tempera-
ture variation in on-resistance, which is typically about
0.4%/°C, as shown in Figure 5. Junction to case tempera-
ture T
JC
is about 10°C in most applications. For a maxi-
mum ambient temperature of 70°C, using ρ
80°C
~ 1.3 in
the above equation is a reasonable choice.
APPLICATIO S I FOR ATIO
WUUU
INPUT VOLTAGE (V)
2
0
INPUT CAPACITOR RMS CURRENT
0.2
0.6
0.8
1.0
2.0
1.4
4
6
7
3776 F04
0.4
1.6
1.8
1.2
35
8
9
10
SINGLE PHASE
DUAL CONTROLLER
2-PHASE
DUAL CONTROLLER
V
OUT1
= 2.5V/2A
V
OUT2
= 1.8V/2A
Figure 4. RMS Input Current Comparison
15
LTC3776
3776fa
Reasonable starting criteria for selecting the P-channel
MOSFET are that it must typically have a gate charge (Q
G
)
less than 25nC to 30nC (at 4.5V
GS
) and a turn-off delay
(t
D(OFF)
) of less than approximately 140ns. However, due
to differences in test and specification methods of various
MOSFET manufacturers, and in the variations in Q
G
and
t
D(OFF)
with gate drive (V
IN
) voltage, the P-channel MOSFET
ultimately should be evaluated in the actual LTC3776
application circuit to ensure proper operation.
Shoot-through between the P-channel and N-channel
MOSFETs can most easily be spotted by monitoring the
input supply current. As the input supply voltage in-
creases, if the input supply current increases dramatically,
then the likely cause is shoot-through. Note that some
MOSFETs that do not work well at high input voltages (e.g.,
V
IN
> 5V) may work fine at lower voltages (e.g., 3.3V).
Table 1 shows a selection of P-channel MOSFETs from
different manufacturers that are known to work well in
LTC3776 applications.
Selecting the N-channel MOSFET is typically easier, since
for a given R
DS(ON)
, the gate charge and turn-on and turn-
off delays are much smaller than for a P-channel MOSFET.
Table 1. Selected P-Channel MOSFETs Suitable for LTC3776
Applications
PART
NUMBER MANUFACTURER TYPE PACKAGE
Si7540DP Siliconix Complementary PowerPak
P/N SO-8
Si9801DY Siliconix Complementary SO-8
P/N
FDW2520C Fairchild Complementary TSSOP-8
P/N
FDW2521C Fairchild Complementary TSSOP-8
P/N
Si3447BDV Siliconix Single P TSOP-6
Si9803DY Siliconix Single P SO-8
FDC602P Fairchild Single P TSOP-6
FDC606P Fairchild Single P TSOP-6
FDC638P Fairchild Single P TSOP-6
FDW2502P Fairchild Dual P TSSOP-8
FDS6875 Fairchild Dual P SO-8
HAT1054R Hitachi Dual P SO-8
NTMD6P02R2-D On Semi Dual P SO-8
APPLICATIO S I FOR ATIO
WUUU
JUNCTION TEMPERATURE (°C)
–50
ρ
T
NORMALIZED ON RESISTANCE
1.0
1.5
150
3776 F07
0.5
0
0
50
100
2.0
Figure 5. R
DS(ON)
vs Temperature
The power dissipated in the top and bottom MOSFETs
strongly depends on their respective duty cycles and load
current. When the LTC3776 is operating in continuous
mode, the duty cycles for the MOSFETs are:
Top P-Channel Duty Cycle =
V
Bottom N-Channel Duty Cycle =
V
OUT
IN
V
V
V
IN
OUT
IN
The MOSFET power dissipations at maximum output
current are:
P
V
V
IRV
ICf
P
VV
V
IR
TOP
OUT
IN
OUT MAX T DS ON IN
OUT MAX RSS OSC
BOT
IN OUT
IN
OUT MAX T DS ON
=+
=
••
••
••
() ()
()
() ()
22
2
2ρ
ρ
Both MOSFETs have I
2
R losses and the P
TOP
equation
includes an additional term for transition losses, which are
largest at high input voltages. The bottom MOSFET losses
are greatest at high input voltage or during a short circuit
when the bottom duty cycle is nearly 100%.
The LTC3776 utilizes a nonoverlapping, antishoot-through
gate drive control scheme to ensure that the P- and
N-channel MOSFETs are not turned on at the same time.
To function properly, the control scheme requires that the
MOSFETs used are intended for DC/DC switching applica-
tions. Many power MOSFETs, particularly P-channel
MOSFETs, are intended to be used as static switches and
therefore are slow to turn on or off.

LTC3776EUF#TRPBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators 2x 2-Phase, No RSENSE Sync Cntr for DDR/
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union