Philips Semiconductors
P89LPC901/902/903
8-bit microcontrollers with two-clock 80C51 core
Product data Rev. 05 — 17 December 2004 25 of 53
9397 750 14465
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
8.2.5 High speed oscillator option (P89LPC901)
This option supports an external crystal in the range of 4 MHz to 18 MHz. Ceramic
resonators are also supported in this configuration. When using an oscillator
frequency above 12 MHz, the reset input function of P1.5 must be enabled. An
external circuit is required to hold the device in reset at power-up until V
DD
has
reached its specified level. When system power is removed V
DD
will fall below
the minimum specified operating voltage. When using an oscillator frequency
above 12 MHz, in some applications, an external brownout detect circuit may
be required to hold the device in reset when V
DD
falls below the minimum
specified operating voltage. If CCLK is 8 MHz or slower, the CLKLP SFR bit
(AUXR1.7) can be set to ‘1’ to reduce power consumption. On reset, CLKLP is ‘0’
allowing highest performance access. This bit can then be set in software if CCLK is
running at 8 MHz or slower.
8.2.6 Clock output (P89LPC901)
The P89LPC901 supports a user selectable clock output function on the
XTAL2/CLKOUT pin when crystal oscillator is not being used. This condition occurs if
another clock source has been selected (on-chip RC oscillator, Watchdog oscillator,
external clock input on X1) and if the Real-Time clock is not using the crystal
oscillator as its clock source. This allows external devices to synchronize to the
P89LPC901. This output is enabled by the ENCLK bit in the TRIM register. The
frequency of this clock output is
1
2
that of the CCLK. If the clock output is not needed
in Idle mode, it may be turned off prior to entering Idle, saving additional power.
8.3 On-chip RC oscillator option
The P89LPC901/902/903 has a 6-bit TRIM register that can be used to tune the
frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory
pre-programmed value to adjust the oscillator frequency to 7.373 MHz, ±2.5%.
End-user applications can write to the Trim register to adjust the on-chip RC oscillator
to other frequencies. If CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can
be set to ‘1’ to reduce power consumption. On reset, CLKLP is ‘0’ allowing highest
performance access. This bit can then be set in software if CCLK is running at 8 MHz
or slower.
8.4 Watchdog oscillator option
The Watchdog has a separate oscillator which has a frequency of 400 kHz. This
oscillator can be used to save power when a high clock frequency is not needed.
8.5 External clock input option (P89LPC901)
In this configuration, the processor clock is derived from an external source driving
the XTAL1/P3.1 pin. The rate may be from 0 Hz up to 18 MHz. The XTAL2/P3.0 pin
may be used as a standard port pin or a clock output. When using an oscillator
frequency above 12 MHz, the reset input function of P1.5 must be enabled. An
external circuit is required to hold the device in reset at power-up until V
DD
has
reached its specified level. When system power is removed V
DD
will fall below
the minimum specified operating voltage. When using an oscillator frequency
above 12 MHz, in some applications, an external brownout detect circuit may
be required to hold the device in reset when V
DD
falls below the minimum
specified operating voltage.
Philips Semiconductors
P89LPC901/902/903
8-bit microcontrollers with two-clock 80C51 core
Product data Rev. 05 — 17 December 2004 26 of 53
9397 750 14465
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Fig 12. Block diagram of oscillator control (P89LPC901).
Fig 13. Block diagram of oscillator control (P89LPC902).
Fig 14. Block diagram of oscillator control (P89LPC903).
2
002aaa447
RTC
CPU
WDT
DIVM
CCLKOSCCLK
PCLK
TIMERS 0 & 1
High freq.
Med. freq.
Low freq.
XTAL1
XTAL2
RC
OSCILLATOR
WATCHDOG
OSCILLATOR
(7.3728 MHz)
(400 kHz)
2
002aaa448
RTC
CPU
WDT
DIVM
CCLKOSCCLK
PCLK
TIMERS 0 & 1
RC
OSCILLATOR
WATCHDOG
OSCILLATOR
(7.3728 MHz)
(400 kHz)
2
002aaa449
RTC
CPU
WDT
DIVM
CCLKOSCCLK
PCLK
TIMERS 0 & 1
RC
OSCILLATOR
WATCHDOG
OSCILLATOR
(7.3728 MHz)
(400 kHz)
BAUD RATE
GENERATOR
UART
Philips Semiconductors
P89LPC901/902/903
8-bit microcontrollers with two-clock 80C51 core
Product data Rev. 05 — 17 December 2004 27 of 53
9397 750 14465
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.
8.6 CPU CLock (CCLK) wake-up delay
The P89LPC901/902/903 has an internal wake-up timer that delays the clock until it
stabilizes depending to the clock source used. If the clock source is any of the three
crystal selections (P89LPC901) the delay is 992 OSCCLK cycles plus 60 to 100 µs.
8.7 CPU CLOCK (CCLK) modification: DIVM register
The OSCCLK frequency can be divided down up to 510 times by configuring a
dividing register, DIVM, to generate CCLK. This feature makes it possible to
temporarily run the CPU at a lower rate, reducing power consumption. By dividing the
clock, the CPU can retain the ability to respond to events that would not exit Idle
mode by executing its normal program at a lower rate. This can also allow bypassing
the oscillator start-up time in cases where Power-down mode would otherwise be
used. The value of DIVM may be changed by the program at any time without
interrupting code execution.
8.8 Low power select
The P89LPC901 is designed to run at 18 MHz (CCLK) maximum. However, if CCLK
is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to ‘1’ to lower the power
consumption further. On any reset, CLKLP is ‘0’ allowing highest performance
access. This bit can then be set in software if CCLK is running at 8 MHz or slower.
8.9 Memory organization
The various P89LPC901/902/903 memory spaces are as follows:
DATA
128 bytes of internal data memory space (00h:7Fh) accessed via direct or indirect
addressing, using instruction other than MOVX and MOVC. All or part of the Stack
may be in this area.
SFR
Special Function Registers. Selected CPU registers and peripheral control and
status registers, accessible only via direct addressing.
CODE
64 kB of Code memory space, accessed as part of program execution and via the
MOVC instruction. The P89LPC901/902/903 has 1 kB of on-chip Code memory.
8.10 Data RAM arrangement
The 128 bytes of on-chip RAM is organized as follows:
8.11 Interrupts
The P89LPC901/902/903 uses a four priority level interrupt structure. This allows
great flexibility in controlling the handling of the many interrupt sources.
Table 10: On-chip data memory usages
Type Data RAM Size (Bytes)
DATA Memory that can be addressed directly and indirectly 128

P89LPC903FD,112

Mfr. #:
Manufacturer:
NXP Semiconductors
Description:
IC MCU 8BIT 1KB FLASH 8SO
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union