REV. A–18–
AD7866
POWER VS. THROUGHPUT RATE
When the AD7866 is in partial power-down mode and not
converting, the average power consumption of the ADC decreases
at lower throughput rates. Figure 21 shows that as the through-
put rate is reduced, the part remains in its partial power-down
state longer, and the average power consumption over time
drops accordingly.
THROUGHPUT – kSPS
0.01
0
POWER – mW
50 100
V
DD
= 5V
SCLK = 20MHz
150 200 250 300 350
0.1
1
10
100
V
DD
= 3V
SCLK = 20MHz
Figure 21. Power vs. Throughput for Partial Power-Down
For example, if the AD7866 is operated in a continuous sampling
mode with a throughput rate of 100 kSPS and an SCLK of
20 MHz (V
DD
= 5 V), and the device is placed in partial power-
down mode between conversions, the power consumption is
calculated as follows. The maximum power dissipation during
normal operation is 24 mW (V
DD
= 5 V). If the power-up time
allowed from partial power-down is one dummy cycle, i.e., 1 µs,
(assuming use of an external reference) and the remaining
conversion time is another cycle, i.e., 1 µs, then the AD7866
can be said to dissipate 24 mW for 2 µs during each conversion
cycle. For the remainder of the conversion cycle, 8 µs, the part
remains in partial power-down mode. The AD7866 can be said to
dissipate 2.8 mW for the remaining 8 µs of the conversion cycle.
If the throughput rate is 100 kSPS, the cycle time is 10 µs and the
average power dissipated during each cycle is (2/10) (24 mW) +
(8/10) (2.8 mW) = 7.04 mW. If V
DD
= 3 V, SCLK = 20 MHz,
and the device is again in partial power-down mode between
conversions, the power dissipated during normal operation is
11.4 mW. The AD7866 can be said to dissipate 11.4 mW for 2 µs
during each conversion cycle and 1.68 mW for the remaining 8 µs
when the part is in partial power-down. With a throughput rate of
100 kSPS, the average power dissipated during each conversion
cycle is (2/10) (11.4 mW) + (8/10) (1.68 mW) = 3.624 mW.
Figure 21 shows the maximum power versus throughput rate
when using the partial power-down mode between conversions
with both 5 V and 3 V supplies for the AD7866.
SERIAL INTERFACE
Figure 22 shows the detailed timing diagram for serial interfacing
to the AD7866. The serial clock provides the conversion clock
and controls the transfer of information from the AD7866
during conversion.
The CS signal initiates the data transfer and conversion process.
The falling edge of CS puts the track-and-hold into hold mode
and takes the bus out of three-state; the analog input is sampled
at this point. The conversion is also initiated at this point and
requires 16 SCLK cycles to complete. Once 13 SCLK falling
edges have elapsed, the track-and-hold will go back into track
on the next SCLK rising edge, as shown in Figure 22 at point
B. On the rising edge of CS, the conversion will be terminated
and D
OUT
A and D
OUT
B will go back into three-state. If CS is
not brought high but is instead held low for a further 16 SCLK
cycles on D
OUT
A, the data from conversion B will be output on
CS
SCLK
D
OUT
A
D
OUT
B
t
2
12345 13141516
t
3
t
4
t
7
t
5
t
8
t
QUIET
0 RANGE A0 A/B DB11 DB2 DB1 DB0
THREE-
STATE
1 LEADING ZERO
3 STATUS BITS
DB10
THREE-
STATE
t
6
B
Figure 22. Serial Interface Timing Diagram
CS
SCLK
D
OUT
A
t
2
t
4
t
7
t
5
0 RANGE DB11
A
A0/ A0 ZERO DB1
A
DB0
A
ZERO RANGE A0/ A0 ONE DB11
B
DB1
B
DB0
B
THREE-
STATE
t
6
t
9
1 LEADING ZERO
3 STATUS BITS
1 LEADING ZERO
3 STATUS BITS
THREE-
STATE
t
3
1
2 3 4
5 14 15 16
17
32
Figure 23. Reading Data from Both ADCs on One D
OUT
Line
REV. A
AD7866
–19–
D
OUT
A. Likewise, if CS is held low for a further 16 SCLK cycles
on D
OUT
B, the data from conversion A will be output on D
OUT
B.
This is illustrated in Figure 23 where the case for D
OUT
A is shown.
Note that in this case, the D
OUT
line in use will go back into
three-state on the 32nd SCLK rising edge or the rising edge of CS,
whichever occurs first.
Sixteen serial clock cycles are required to perform the conversion
process and to access data from one conversion on either data
line of the AD7866. CS going low provides the leading zero to
be read in by the microcontroller or DSP. The remaining data is
then clocked out by subsequent SCLK falling edges, beginning
with the first of three data STATUS bits. Thus the first falling
clock edge on the serial clock has the leading zero provided and
also clocks out the first of three STATUS bits. The final bit in
the data transfer is valid on the sixteenth falling edge, having
being clocked out on the previous (fifteenth) falling edge. In
applications with a slower SCLK, it is possible to read in data on
each SCLK rising edge, i.e., the first rising edge of SCLK after
the CS falling edge would have the leading zero provided and
the fifteenth rising SCLK edge would have DB0 provided. The
three STATUS bits that follow the leading zero provide infor-
mation with respect to the conversion result that follows them
on the D
OUT
line in use. Table III shows how these identifica-
tion bits can be interpreted.
MICROPROCESSOR INTERFACING
The serial interface on the AD7866 allows the parts to be directly
connected to a range of many different microprocessors. This
section explains how to interface the AD7866 with some of the
more common microcontroller and DSP serial interface protocols.
AD7866 to ADSP-218x
The ADSP-218x family of DSPs is directly interfaced to the
AD7866 without any glue logic required. The V
DRIVE
pin of the
AD7866 takes the same supply voltage as that of the ADSP-218x.
This allows the ADC to operate at a higher supply voltage than
the serial interface, i.e., ADSP-218x, if necessary. This example
shows both D
OUT
A and D
OUT
B of the AD7866 connected to
both serial ports of the ADSP-218x.
Table III. STATUS Bit Description
Bit Bit Name Comment
15 ZERO Leading Zero. This bit will always be a zero output.
14 RANGE The polarity of this bit reflects the analog input range that has been selected with the RANGE pin.
If it is a 0, it means that in the previous transfer upon the falling edge of the CS, the range pin was
at a logic low, providing an analog input range from 0 V to V
REF
for this conversion. If it is a 1, it
means that in the previous transfer upon the falling edge of CS, the RANGE pin was at a logic high,
resulting in an analog input range of 2 V
REF
selected for this conversion. See Analog Input section.
13 A0 This bit indicates on which channel the conversion is being performed, Channel 1 or Channel 2 of
the ADC in question. If this bit is a 0, the conversion result will be from Channel 1 of the ADC;
if it is a 1, the result will be from Channel 2 of the ADC in question.
12 A/B This bit indicates from which ADC the conversion result comes. If this bit is a 0, the result is from ADC A;
if it is a 1, the result is from ADC B. This is especially useful if only one serial port is available for
use and one D
OUT
line is used, as shown in Figure 23.
The SPORT0 control register should be set up as follows:
TFSW = RFSW = 1, Alternate Framing
INVRFS = INVTFS = 1, Active Low Frame Signal
DTYPE = 00, Right Justify Data
SLEN = 1111, 16-Bit Data-Words
ISCLK = 1, Internal Serial Clock
TFSR = RFSR = 1, Frame Every Word
IRFS = 0
ITFS = 1
The SPORT1 control register should be set up as follows:
TFSW = RFSW = 1, Alternate Framing
INVRFS = INVTFS = 1, Active Low Frame Signal
DTYPE = 00, Right Justify Data
SLEN = 1111, 16-Bit Data-Words
ISCLK = 0, External Serial Clock
TFSR = RFSR = 1, Frame Every Word
IRFS = 0
ITFS = 1
To implement the power-down modes on the AD7866, SLEN
should be set to 1001 to issue an 8-bit SCLK burst. The
connection diagram is shown in Figure 24. The ADSP-218x has
the TFS0 and RFS0 of the SPORT0 and the RFS1 of SPORT1
tied together, with TFS0 set as an output and both RFS0 and RFS1
set as inputs. The DSP operates in alternate framing mode and
the SPORT control register is set up as described. The frame
synchronization signal generated on the TFS is tied to CS and,
as with all signal processing applications, equidistant sampling is
necessary. However, in this example, the timer interrupt is used to
control the sampling rate of the ADC and under certain conditions,
equidistant sampling may not be achieved.
The timer and other registers are loaded with a value that will
provide an interrupt at the required sample interval. When an
interrupt is received, a value is transmitted with TFS/DT (ADC
control word). The TFS is used to control the RFS and there-
fore the reading of data. The frequency of the serial clock is set
in the SCLKDIV register. When the instruction to transmit with
TFS is given (i.e., AX0 = TX0), the state of the SCLK is
checked. The DSP will wait until the SCLK has gone high, low,
and high before transmission will start. If the timer and SCLK
values are chosen such that the instruction to transmit occurs on
or near the rising edge of SCLK, the data may be transmitted or
it may wait until the next clock edge.
REV. A–20–
AD7866
For example, if the ADSP-2189 had a 20 MHz crystal such that it
had a master clock frequency of 40 MHz, then the master cycle
time would be 25 ns. If the SCLKDIV register is loaded with the
value 3, an SCLK of 5 MHz is obtained and eight master clock
periods will elapse for every 1 SCLK period. Depending on the
throughput rate selected, if the timer register were loaded with the
value, 803, (803 + 1 = 804), for example, 100.5 SCLKs would
occur between interrupts and subsequently between transmit
instructions. This situation would result in nonequidistant
sampling as the transmit instruction is occurring on an SCLK
edge. If the number of SCLKs between interrupts were a whole
integer figure of N, equidistant sampling would be implemented
by the DSP.
AD7866*
V
DRIVE
D
OUT
A
D
OUT
B
CS
SCLK
ADSP-218x*
DR0
DR1
TFS0
SCLK0
RFS0
RSF1
SCLK1
*ADDITIONAL PINS OMITTED
FOR CLARITY
V
DD
Figure 24. Interfacing the AD7866 to the ADSP-218x
AD7866*
V
DRIVE
D
OUT
A
D
OUT
B
CS
SCLK
TMS320C541*
DR0
DR1
CLKX0
CLKR0
CLKX1
CLKR1
*ADDITIONAL PINS OMITTED
FOR CLARITY
V
DD
FSX0
FSR0
FSR1
Figure 25. Interfacing the AD7866 to the TMS320C541
AD7866 to TMS320C541
The serial interface on the TMS320C541 uses a continuous serial
clock and frame synchronization signals to synchronize the data
transfer operations with peripheral devices like the AD7866. The
CS input allows easy interfacing between the TMS320C541 and
the AD7866 with no glue logic required. The serial ports of
the TMS320C541 are set up to operate in burst mode with internal
CLKX (Tx serial clock on serial port 0) and FSX0 (Tx frame sync
from serial port 0). The serial port control (SPC) registers must have
the following setup:
SPC0: FO = 0, FSM = 1, MCM = 1 and TxM = 1
SPC1: FO = 0, FSM = 1, MCM = 0 and TxM = 0
The format bit, FO, may be set to 1 to set the word length to
eight bits, in order to implement the power-down modes on the AD7866.
The connection diagram is shown in Figure 25. It should be noted
that for signal processing applications, it is imperative that the
frame synchronization signal from the TMS320C541 will provide
equidistant sampling. The V
DRIVE
pin of the AD7866 takes the
same supply voltage as that of the TMS320C541. This allows the
ADC to operate at a higher voltage than the serial interface, i.e.,
TMS320C541, if necessary.
AD7866 to DSP-563xx
The connection diagram in Figure 26 shows how the AD7866
can be connected to the ESSI (synchronous serial interface) of
the DSP-563xx family of DSPs from Motorola. Each ESSI
(there are two on-board) is operated in synchronous mode
(bit SYN = 1 in CRB register) with internally generated word
length frame sync for both Tx and Rx (bits FSL1 = 0 and FSL0 = 0
in CRB). Normal operation of the ESSI is selected by making
MOD = 0 in the CRB. Set the word length to 16 by setting bits
WL1 = 1 and WL0 = 0 in CRA. To implement the power-down
modes on the AD7866, the word length can be changed to eight
bits by setting bits WL1 = 0 and WL0 = 0 in CRA. The FSP bit
in the CRB should be set to 1 to make the frame sync negative.
It should be noted that for signal processing applications, it is
imperative that the frame synchronization signal from the
DSP-563xx provide equidistant sampling.
In the example shown in Figure 26, the serial clock is taken from
the ESSI0, so the SCK0 pin must be set as an output, SCKD = 1,
while the SCK1 pin is set up as an input, SCKD = 0. The frame
sync signal is taken from SC02 on ESSI0, so SCD2 = 1, while
on ESSI1, SCD2 = 0, so SC12 is configured as an input. The
V
DRIVE
pin of the AD7866 takes the same supply voltage as that
of the DSP-563xx. This allows the ADC to operate at a higher
voltage than the serial interface, i.e., DSP-563xx, if necessary.
AD7866*
V
DRIVE
D
OUT
A
D
OUT
B
CS
SCLK
DSP-563xx*
SC02
SC12
SCK0
SRD0
SRD1
SCK1
*ADDITIONAL PINS OMITTED
FOR CLARITY
V
DD
Figure 26. Interfacing to the DSP-563xx
APPLICATION HINTS
Grounding and Layout
The analog and digital supplies to the AD7866 are independent
and separately pinned out to minimize coupling between the analog
and digital sections of the device. The AD7866 has very good
immunity to noise on the power supplies as can be shown by the
PSRR vs. Supply Ripple Frequency plots, TPC 3a to TPC 4b.
However, care should be taken with regard to grounding and
layout.
The printed circuit board that houses the AD7866 should be
designed such that the analog and digital sections are separated
and confined to certain areas of the board. This facilitates the
use of ground planes that can be easily separated. A minimum

AD7866ARUZ-REEL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC Dual 1MSPS 12-Bit 2-Ch SAR
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union