REV. D
AD7713
–15–
In any case, the error introduced due to longer charging times is
a gain error that can be removed using the system calibration
capabilities of the AD7713 provided that the resultant span is
within the span limits of the system calibration techniques for
the AD7713.
The AIN3 input contains a resistive attenuation network as
outlined in Figure 8. The typical input impedance on this input
is 44 k. As a result, the AIN3 input should be driven from a
low impedance source.
AIN3
33k
11k
V
BIAS
MODULATOR
CIRCUIT
Figure 8. AIN3 Input Impedance
ANALOG INPUT FUNCTIONS
Analog Input Ranges
The analog inputs on the AD7713 provide the user with consid-
erable flexibility in terms of analog input voltage ranges. Two of
the inputs are differential, programmable-gain, input channels
that can handle either unipolar or bipolar input signals. The
common-mode range of these inputs is from AGND to AV
DD
,
provided that the absolute value of the analog input voltage lies
between AGND – 30 mV and AV
DD
+ 30 mV. The third analog
input is a single-ended, programmable gain high-level input that
accepts analog input ranges of 0 to 4 V
REF
/GAIN.
The dc input leakage current on the AIN1 and AIN2 inputs
is 10 pA maximum at 25°C (±1 nA over temperature). This
results in a dc offset voltage developed across the source
impedance. However, this dc offset effect can be compensated
for by a combination of the differential input capability of the
part and its system calibration mode. The dc input current on
the AIN3 input depends on the input voltage. For the nominal
input voltage range of 10 V, the input current is 225 µA typ.
Burn Out Current
The AIN1(+) input of the AD7713 contains a 1 µA current source
that can be turned on/off via the control register. This current
source can be used in checking that a transducer has not burnt out
or gone open circuit before attempting to take measurements on
that channel. If the current is turned on and is allowed flow into
the transducer and a measurement of the input voltage on the
AIN1 input is taken, it can indicate that the transducer is not func-
tioning correctly. For normal operation, this burn out current is
turned off by writing a 0 to the BO bit in the control register.
RTD Excitation Currents
The AD7713 also contains two matched 200 µA constant cur-
rent sources which are provided at the RTD1 and RTD2 pins of
the device. These currents can be turned on/off via the control
register. Writing a 1 to the RO bit of the control register enables
these excitation currents.
For 4-wire RTD applications, one of these excitation currents is
used to provide the excitation current for the RTD; the second
current source can be left unconnected. For 3-wire RTD con-
figurations, the second on-chip current source can be used
to eliminate errors due to voltage drops across lead resistances.
Figures 19 and 20 in the Application section show some RTD
configurations with the AD7713.
The temperature coefficient of the RTD current sources is
typically 20 ppm/°C with a typical matching between the
temperature coefficients of both current sources of 3 ppm/°C.
For applications where the absolute value of the temperature
coefficient is too large, the following schemes can be used to
remove the drift error.
The conversion result from the AD7713 is ratiometric to the
V
REF
voltage. Therefore, if the V
REF
voltage varies with the RTD
temperature coefficient, the temperature drift from the current
source will be removed. For 4-wire RTD applications, the refer-
ence voltage can be made ratiometric to the RTD current source
by using the second current with a low TC resistor to generate the
reference voltage for the part. In this case, if a 12.5 k resistor is
used, the 200 µA current source generates 2.5 V across the resistor.
This 2.5 V can be applied to the REF IN(+) input of the AD7713
and the REF IN(–) input at ground will supply a V
REF
of 2.5 V for
the part. For 3-wire RTD configurations, the reference voltage for
the part is generated by placing a low TC resistor (12.5 k for
2.5 V reference) in series with one of the constant current sources.
The RTD current sources can be driven to within 2 V of AV
DD
.
The reference input of the AD7713 is differential so the REF IN(+)
and REF IN(–) of the AD7713 are driven from either side of the
resistor. Both schemes ensure that the reference voltage for the part
tracks the RTD current sources over temperature and, thereby,
removes the temperature drift error.
Bipolar/Unipolar Inputs
Two analog inputs on the AD7713 can accept either unipolar or
bipolar input voltage ranges while the third channel accepts only
unipolar signals. Bipolar or unipolar options for AIN1 and AIN2
are chosen by programming the B/U bit of the control register.
This programs both channels for either unipolar or bipolar opera-
tion. Programming the part for either unipolar or bipolar operation
does not change any of the input signal conditioning; it simply
changes the data output coding. The data coding is binary for
unipolar inputs and offset binary for bipolar inputs.
The AIN1 and AIN2 input channels are differential, and as a
result, the voltage to which the unipolar and bipolar signals are
referenced is the voltage on the AIN1(–) and AIN2(–) inputs. For
example, if AIN1(–) is 1.25 V and the AD7713 is configured for
unipolar operation with a gain of 1 and a V
REF
of 2.5 V, the input
voltage range on the AIN1(+) input is 1.25 V to 3.75 V. For the
AIN3 input, the input signals are referenced to AGND.
REFERENCE INPUT
The reference inputs of the AD7713, REF IN(+) and REF IN(–),
provide a differential reference input capability. The common-
mode range for these differential inputs is from V
SS
to AV
DD
. The
nominal differential voltage, V
REF
(REF IN(+) – REF IN(–)), is
2.5 V for specified operation, but the reference voltage can go to
5 V with no degradation in performance, provided that the
absolute value of REF IN(+) and REF IN(–) does not exceed
its AV
DD
and AGND limits. The part is also functional with
V
REF
voltages down to 1 V, but with degraded performance as the
output noise will, in terms of LSB size, be larger. REF IN(+)
must always be greater than REF IN(–) for correct operation of
the AD7713.
Both reference inputs provide a high impedance, dynamic load
similar to the analog inputs. The maximum dc input leakage cur-
rent is 10 pA (±1 nA over temperature), and source resistance
may result in gain errors on the part. The reference inputs
REV. D–16–
AD7713
look like the AIN1 analog input (see Figure 7). In this case, R
INT
is 5 k typ and C
INT
varies with gain. The input sample rate is
f
CLK IN
/256 and does not vary with gain. For gains of 1 to 8,
C
INT
is 20 pF; for a gain of 16, it is 10 pF; for a gain of 32, it is
5 pF; for a gain of 64, it is 2.5 pF; and for a gain of 128, it is
1.25 pF.
The digital filter of the AD7713 removes noise from the reference
input just as it does with the analog input, and the same limita-
tions apply regarding lack of noise rejection at integer multiples of
the sampling frequency. The output noise performance outlined
in Tables I and II assumes a clean reference. If the reference
noise in the bandwidth of interest is excessive, it can degrade the
performance of the AD7713. A recommended reference source
for the AD7713 is the AD680, a 2.5 V reference.
USING THE AD7713 SYSTEM
DESIGN CONSIDERATIONS
The AD7713 operates differently from successive approxima-
tion ADCs or integrating ADCs. Since it samples the signal
continuously, like a tracking ADC, there is no need for a start
convert command. The output register is updated at a rate
determined by the first notch of the filter, and the output can be
read at any time, either synchronously or asynchronously.
Clocking
The AD7713 requires a master clock input, which may be an
external TTL/CMOS compatible clock signal applied to the
MCLK IN pin with the MCLK OUT pin left unconnected.
Alternatively, a crystal of the correct frequency can be connected
between MCLK IN and MCLK OUT, in which case the clock
circuit will function as a crystal controlled oscillator. For lower
clock frequencies, a ceramic resonator may be used instead of the
crystal. For these lower frequency oscillators, external capacitors
may be required on either the ceramic resonator or on the crystal.
The input sampling frequency, the modulator sampling frequency,
the –3 dB frequency, output update rate, and calibration time
are all directly related to the master clock frequency, f
CLK IN
.
Reducing the master clock frequency by a factor of two will halve
the above frequencies and update rate and will double the cali-
bration time.
The current drawn from the DV
DD
power supply is also directly
related to f
CLK IN
. Reducing f
CLK IN
by a factor of two will halve
the DV
DD
current but will not affect the current drawn from the
AV
DD
power supply.
System Synchronization
If multiple AD7713s are operated from a common master clock,
they can be synchronized to update their output registers simul-
taneously. A falling edge on the SYNC input resets the filter
and places the AD7713 into a consistent, known state. A com-
mon signal to the AD7713’s SYNC inputs will synchronize their
operation. This would normally be done after each AD7713 has
performed its own calibration or has had calibration coefficients
loaded to it.
The SYNC input can also be used to reset the digital filter in
systems where the turn-on time of the digital power supply
(DV
DD
) is very long. In such cases, the AD7713 will start operat-
ing internally before the DV
DD
line has reached its minimum
operating level, 4.75 V. With a low DV
DD
voltage, the AD7713’s
internal digital filter logic does not operate correctly. Thus, the
AD7713 may have clocked itself into an incorrect operating
condition by the time that DV
DD
has reached its correct level.
The digital filter will be reset upon issue of a calibration,
command (whether it is self-calibration, system calibration or
background calibration) to the AD7713. This ensures correct
operation of the AD7713. In systems where the power-on default
conditions of the AD7713 are acceptable, and no calibration is
performed after power-on, issuing a SYNC pulse to the AD7713
will reset the AD7713’s digital filter logic. An R, C on the SYNC
line, with R, C time constant longer than the DV
DD
power-on
time, will perform the SYNC function.
Accuracy
- ADCs, like VFCs and other integrating ADCs, do not contain
any source of nonmonotonicity, and inherently offer no missing
codes performance. The AD7713 achieves excellent linearity by
the use of high quality, on-chip silicon dioxide capacitors, which
have a very low capacitance/voltage coefficient. The device also
achieves low input drift through the use of chopper stabilized tech-
niques in its input stage. To ensure excellent performance over
time and temperature, the AD7713 uses digital calibration tech-
niques that minimize offset and gain error.
Autocalibration
Autocalibration on the AD7713 removes offset and gain
errors from the device. A calibration routine should be initi-
ated on the device whenever there is a change in the ambient
operating temperature or supply voltage. It should also be
initiated if there is a change in the selected gain, filter notch,
or bipolar/unipolar input range. However, if the AD7713 is in
its background calibration mode, the above changes are all
automatically taken care of (after the settling time of the filter
has been allowed for).
The AD7713 offers self-calibration, system calibration, and
background calibration facilities. For calibration to occur on
the selected channel, the on-chip microcontroller must record
the modulator output for two different input conditions. These
are zero-scale and full-scale points. With these readings, the
microcontroller can calculate the gain slope for the input to
output transfer function of the converter. Internally, the part
works with a resolution of 33 bits to determine its conversion
result of either 16 bits or 24 bits.
The AD7713 also provides the facility to write to the on-chip
calibration registers, and, in this manner, the span and offset for
the part can be adjusted by the user. The offset calibration register
contains a value that is subtracted from all conversion results, while
the full-scale calibration register contains a value that is multiplied
by all conversion results. The offset calibration coefficient is sub-
tracted from the result prior to the multiplication by the full-scale
coefficient. In the first three modes outlined here, the DRDY line
indicates that calibration is complete by going low. If DRDY is low
before (or goes low during) the calibration command, it may take
up to one modulator cycle before DRDY goes high to indicate that
calibration is in progress. Therefore, the DRDY line should be
ignored for up to one modulator cycle after the last bit of the cali-
bration command is written to the control register.
Self-Calibration
In the self-calibration mode with a unipolar input range, the
zero-scale point used in determining the calibration coefficients
is with both inputs shorted and the full-scale point is V
REF
. The
zero-scale coefficient is determined by converting an internal
shorted inputs node. The full-scale coefficient is determined
from the span between this shorted inputs conversion and a
conversion on an internal V
REF
node. The self-calibration mode
REV. D
AD7713
–17–
is invoked by writing the appropriate values (0, 0, 1) to the
MD2, MD1, and MD0 bits of the control register. In this cali-
bration mode, the shorted inputs node is switched in to the
modulator first and a conversion is performed; the V
REF
node is
then switched in, and another conversion is performed. When
the calibration sequence is complete, the calibration coefficients
updated, and the filter resettled to the analog input voltage, the
DRDY output goes low. The self-calibration procedure takes
into account the selected gain on the PGA.
For bipolar input ranges in the self-calibrating mode, the sequence
is very similar to that just outlined. In this case, the two points
that the AD7713 calibrates are midscale (bipolar zero) and
positive full scale.
System Calibration
System calibration allows the AD7713 to compensate for system
gain and offset errors as well as its own internal errors. System
calibration performs the same slope factor calculations as self-
calibration but uses voltage values presented by the system to
the AIN inputs for the zero-scale and full-scale points. System
calibration is a 2-step process. The zero-scale point must be
presented to the converter first. It must be applied to the converter
before the calibration step is initiated and remain stable until the
step is complete. System calibration is initiated by writing the
appropriate values (0, 1, 0) to the MD2, MD1, and MD0 bits
of the control register. The DRDY output from the device will
signal when the step is complete by going low. After the zero-
scale point is calibrated, the full-scale point is applied and the
second step of the calibration process is initiated by again writ-
ing the appropriate values (0, 1, 1) to MD2, MD1, and MD0.
Again, the full-scale voltage must be set up before the calibra-
tion is initiated, and it must remain stable throughout the
calibration step. DRDY goes low at the end of this second step
to indicate that the system calibration is complete. In the unipo-
lar mode, the system calibration is performed between the two
endpoints of the transfer function; in the bipolar mode, it is
performed between midscale and positive full scale.
This 2-step system calibration mode offers another feature.
After the sequence has been completed, additional offset or gain
calibrations can be performed by themselves to adjust the zero
reference point or the system gain. This is achieved by perform-
ing the first step of the system calibration sequence (by writing
0, 1, 0 to MD2, MD1, and MD0). This will adjust the zero-
scale or offset point but will not change the slope factor from
what was set during a full system calibration sequence.
System calibration can also be used to remove any errors from
an antialiasing filter on the analog input. A simple R, C anti-
aliasing filter on the front end may introduce a gain error on the
analog input voltage but the system calibration can be used to
remove this error.
System Offset Calibration
System offset calibration is a variation of both the system cali-
bration and self-calibration. In this case, the zero-scale point
for the system is presented to the AIN input of the converter.
System offset calibration is initiated by writing 1, 0, 0 to MD2,
MD1, and MD0. The system zero-scale coefficient is deter-
mined by converting the voltage applied to the AIN input, while
the full-scale coefficient is determined from the span between
this AIN conversion and a conversion on V
REF
. The zero-scale
point should be applied to the AIN input for the duration of the
calibration sequence. This is a 1-step calibration sequence with
DRDY going low when the sequence is completed. In the uni-
polar mode, the system offset calibration is performed between
the two endpoints of the transfer function; in the bipolar mode,
it is performed between midscale and positive full scale.
Background Calibration
The AD7713 also offers a background calibration mode where
the part interleaves its calibration procedure with its normal
conversion sequence. In the background calibration mode, the
same voltages are used as the calibration points as are used in
the self-calibration mode, i.e., shorted inputs and V
REF
. The
background calibration mode is invoked by writing 1, 0, 1 to
MD2, MD1, and MD0 of the control register. When invoked,
the background calibration mode reduces the output data rate of
the AD7713 by a factor of 6 while the –3 dB bandwidth remains
unchanged. Its advantage is that the part is continually per-
forming calibration and automatically updating its calibration
coefficients. As a result, the effects of temperature drift, supply
sensitivity and time drift on zero- and full-scale errors are auto-
matically removed. When the background calibration mode is
turned on, the part will remain in this mode until Bits MD2,
MD1, and MD0 of the control register are changed. With back-
ground calibration mode on, the first result from the AD7713
will be incorrect as the full-scale calibration will not have been
performed. For a step change on the input, the second output
update will have settled to 100% of the final value.
Table IV summarizes the calibration modes and the calibration
points associated with them. It also gives the duration from
when the calibration is invoked to when valid data is available to
the user.
Span and Offset Limits
Whenever a system calibration mode is used, there are limits on
the amount of offset and span that can be accommodated. The
range of input span in both the unipolar and bipolar modes for
AIN1 and AIN2 has a minimum value of 0.8 V
REF
/GAIN and
a maximum value of 2.1 V
REF
/GAIN. For AIN3, the mini-
mum value is 3.2 V
REF
/GAIN, while the maximum value is
4.2 V
REF
/GAIN.
Table IV. Calibration Truth Table
Zero-Scale Full-Scale
Calibration Type MD2, MD1, MD0 Calibration Calibration Sequence Duration
Self-Calibration 0, 0, 1 Shorted Inputs V
REF
1-Step 9 1/Output Rate
System Calibration 0, 1, 0 AIN 2-Step 4 1/Output Rate
System Calibration 0, 1, 1 AIN 2-Step 4 1/Output Rate
System Offset Calibration 1, 0, 0 AIN V
REF
1-Step 9 1/Output Rate
Background Calibration 1, 0, 1 Shorted Inputs V
REF
1-Step 6 1/Output Rate

AD7713ARZ-REEL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC CMOS 24B w/ Matched RTD Crnt Source
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet