Data Sheet ADF4154
Rev. C | Page 15 of 24
Table 10. Noise and Spur Register
04833-023
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB1
DB0
C2 (1)
C1 (1)
T1T2T3T4T5T6T7T8
CONTROL
BITS
NOISE AND SPUR
MODE
DB2
T9
NOISE
AND SPUR
MODE
RESERVED
RESE
RVED
RESERVED
RESERVED
DB10, DB5, DB4, DB3
0
NOISE AND SPUR SETTING
LOWEST SPUR MODE
LOW NOISEAND SPUR MODE
LOWEST NOISE MODE
DB9, DB8, DB7, DB6, DB2
00000
11100
11111
THESE BITS MUST BE SET TO 0
FOR NORMAL OPERATION.
ADF4154 Data Sheet
Rev. C | Page 16 of 24
REGISTER DEFINITIONS
N-Divider Register, R0
The on-chip N-divider register is programmed by setting
R0 [1, 0] to [0, 0]. Table 7 shows the input data format for
programming this register.
9-Bit RF N Value (INT)
These nine bits control what is loaded as the INT value. This is
used to determine the overall feedback division factor (see
Equation 1).
12-Bit RF FRAC Value
These 12 bits control what is loaded as the FRAC value into the
fractional interpolator. This value helps determine the overall
feedback division factor (see Equation 1). The FRAC value must
be less than the value loaded into the MOD register.
Fast Lock
Setting the part to logic high enables fast-lock mode. To use fast
lock, the required time value for wide bandwidth mode must be
loaded into the R-divider register.
The charge pump current increases from 16× the minimum
current and reverts back to 1× the minimum current after the
time value loaded expires.
See the Fast-Lock Timer and Register Sequences section for
more information.
R-DIVIDER REGISTER, R1
The on-chip R-divider register is programmed by setting
R1 [1, 0] to [0, 1]. Table 8 shows the input data format for
programming this register.
Load Control
When this bit is set to logic high, the value being programmed
in the modulus is not loaded into the modulus. Instead, it sets
the fast-lock timer. The value of the fast-lock timer divided by
f
PFD
is the amount of time the PLL stays in wide bandwidth mode.
MUXOUT
The on-chip multiplexer is controlled by R1 [22 ... 20] on the
ADF4154. Table 8 shows the truth table.
Digital Lock Detect
The digital lock detect output goes high if there are 40 successive
PFD cycles with an input error of less than 15 ns. It stays high
until a new channel is programmed or until the error at the
PFD input exceeds 30 ns for one or more cycles. If the loop
bandwidth is narrow compared with the PFD frequency, the
error at the PFD inputs may drop below 15 ns for 40 cycles
around a cycle slip. Therefore, the digital lock detect may briefly,
and falsely, go high until the error exceeds 30 ns. In this case, the
digital lock detect is reliable only as a loss-of-lock detector.
Prescaler (P/P + 1)
The dual-modulus prescaler (P/P + 1), along with the INT,
FRAC, and MOD counters, determines the overall division ratio
from the RF
IN
to the PFD input. Operating at CML levels, the
prescaler uses the clock from the RF input stage and divides it
down for the counters. The prescaler is based on a synchronous
4/5 core. When it is set to 4/5, the maximum RF frequency
allowed is 2 GHz. Therefore, when operating the ADF4154 with
frequencies greater than 2 GHz, the prescaler must be set to 8/9.
The prescaler limits the INT value as follows:
With P = 4/5, N
MIN
= 31
With P = 8/9, N
MIN
= 91
The prescaler can also influence the phase noise performance.
If INT < 91, a prescaler of 4/5 should be used. For applications
where INT > 91, a prescaler of 8/9 should be used for optimum
noise performance (see Table 8).
4-Bit R Value
The 4-bit R value allows the input reference frequency (REF
IN
)
to be divided down to produce the reference clock for the PFD.
Division ratios from 1 to 15 are allowed.
12-Bit Interpolator Modulus Value/Fast-Lock Timer
Depending on the value of the load control bit, Bits DB13:DB2
can either be used to set the modulus or the fast-lock timer value.
When the load control bit (DB23) is set to 0, the required
modulus can be programmed in the R-divider register
(DB13:DB2).
When the load control bit (DB23) is set to 1, the required fast-
lock timer value can be programmed in the R-divider register
(DB13:DB2).
This programmable register sets the fractional modulus, which
is the ratio of the PFD frequency to the channel step resolution
on the RF output. Refer to the RF Synthesizer: A Worked
Example section for more information.
The ADF4154 programmable modulus is double buffered,
meaning that two events must occur before the part can use a
new modulus value. The first event is that the new modulus value
must be latched into the device by writing to the R-divider register,
and the second event is that a new write must be performed on
the N-divider register. Therefore, whenever the modulus value
is updated, the N-divider register must be written to so that the
modulus value is loaded correctly.
CONTROL REGISTER, R2
The on-chip control register is programmed by setting R2 [1, 0]
to [0, 1]. Table 9 shows the input data format for programming
this register.
RF Counter Reset
DB2 is the RF counter reset bit for the ADF4154. When this bit
is set to 1, the RF synthesizer counters are held in reset. For
normal operation, this bit should be set to 0.
Data Sheet ADF4154
Rev. C | Page 17 of 24
RF Charge Pump Three-State
This bit (DB3) puts the charge pump into three-state mode when it
is programmed to 1. For normal operation, it should be set to 0.
RF Power-Down
DB4 on the ADF4154 provides the programmable power-down
mode. Setting Bit DB4 to 1 powers down the device. Setting
Bit DB4 to 0 returns the synthesizer to normal operation. While
in software power-down mode, the part retains all information
in its registers. Only when supplies are removed are the register
contents lost.
When a power-down is activated, the following events occur:
1. All active dc current paths are removed.
2. The synthesizer counters are forced to their load
state conditions.
3. The charge pump is forced into three-state mode.
4. The digital lock detect circuitry is reset.
5. The RF
IN
input is debiased.
6. The input register remains active and capable of loading
and latching data.
Lock Detect Precision (LDP)
When the LDP bit (DB5) is programmed to 0, 24 consecutive
reference cycles of 15 ns must occur before the digital lock detect is
set. When this bit is programmed to 1, 40 consecutive reference
cycles of 15 ns must occur before digital lock detect is set.
Phase Detector Polarity
DB6 sets the phase detector polarity. When the VCO characteristics
are positive, this bit should be set to 1. When they are negative,
this bit should be set to 0.
Charge Pump (CP) Current Setting and CP/2
DB7, DB8, DB9, and DB10 set the charge pump current, which
should be set according to the loop filter design (see Table 9).
REF
IN
Doubler
Setting the REF
IN
doubler bit (DB11) to 0 feeds the REF
IN
signal
directly to the 4-bit R-counter, which disables the doubler.
Setting the REF
IN
doubler bit to 1 multiplies the REF
IN
frequency
by a factor of 2 before feeding into the 4-bit R-counter. When
the doubler is disabled, the REF
IN
falling edge is the active edge
at the PFD input to the fractional synthesizer. When the doubler
is enabled, both the rising and falling edges of REF
IN
become
active edges at the PFD input.
When the doubler is enabled and the lowest spur mode is
chosen, the in-band phase noise performance is sensitive to the
REF
IN
duty cycle. The phase noise degradation can be as much
as 5 dB for the REF
IN
duty cycles outside a 45% to 55% range.
The phase noise is insensitive to the REF
IN
duty cycle in the
lowest noise mode and in the lowest noise and spur mode. The
phase noise is insensitive to the REF
IN
duty cycle when the
doubler is disabled.
The maximum allowed REF
IN
frequency when the doubler is
enabled is 30 MHz.
NOISE AND SPUR REGISTER, R3
The on-chip noise and spur register is programmed by setting
R3 [1, 0] to [1, 1].
Table 10 shows the input data format for programming this
register.
Noise and Spur Mode
Noise and spur mode allows the user to optimize a design either
for improved spurious performance or for improved phase noise
performance. When the lowest spur setting is chosen, dither is
enabled. This randomizes the fractional quantization noise so
that it looks more like white noise than spurious noise, meaning
that the part is optimized for improved spurious performance.
This operation is typically used when the PLL closed-loop band-
width is wide for fast-locking applications. A wide-loop bandwidth
is defined as a loop bandwidth greater than 1/10 of the RF
OUT
channel step resolution (f
RES
). A wide-loop filter does not attenuate
the spurs to a level that a narrow-loop bandwidth would. When
the low noise and spur setting is enabled, dither is disabled.
This optimizes the synthesizer to operate with improved noise
performance. However, the spurious performance is degraded
in this mode compared with the lowest spur setting. To further
improve noise performance, the lowest noise setting option can
be used, which reduces the phase noise. As well as disabling the
dither, it ensures that the charge pump operates in an optimum
region for noise performance. This setting is extremely useful if
a narrow-loop filter bandwidth is used. The synthesizer ensures
extremely low noise, and the filter attenuates the spurs. The
typical performance characteristics show the trade-offs in a
typical WCDMA setup for different noise and spur settings.
RESERVED BITS
These bits should be set to 0 for normal operation.

ADF4154BCPZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Phase Locked Loops - PLL Fractional-N Freq Synthesizer
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union