AX8052F151
www.onsemi.com
16
CIRCUIT DESCRIPTION
The AX8052F151 is a single chip ultralowpower
RFmicrocontroller SoC primarily for use in SRD bands.
The onchip transceiver consists of a fully integrated RF
frontend with modulator, and demodulator. Base band data
processing is implemented in an advanced and flexible
communication controller that enables user friendly
communication.
The AX8052F151 contains a high speed microcontroller
compatible to the industry standard 8052 instruction set. It
contains 64 kBytes of FLASH and 8.25 kBytes of internal
SRAM.
The AX8052F151 features 3 16bit general purpose
timers with SD capability, 2 output compare units for
generating PWM signals, 2 input compare units to record
timings of external signals, 2 16bit wakeup timers, a
watchdog timer, 2 UARTs, a Master/Slave SPI controller, a
10bit 500 kSample/s A/D converter, 2 analog comparators,
a temperature sensor, a 2 channel DMA controller, and a
dedicated AES crypto controller. Debugging is aided by a
dedicated hardware debug interface controller that connects
using a 3wire protocol (1 dedicated wire, 2 shared with
GPIO) to the PC hosting the debug software.
While the radio carrier/LO synthesizer can only be
clocked by the crystal oscillator (carrier stability
requirements dictate a high stability reference clock in the
MHz range), the microcontroller and its peripherals provide
extremely flexible clocking options. The system clock that
clocks the microcontroller, as well as peripheral clocks, can
be selected from one of the following clock sources: the
crystal oscillator, an internal high speed 20 MHz oscillator,
an internal low speed 640 Hz/10 kHz oscillator, or the low
frequency crystal oscillator. Prescalers offer additional
flexibility with their programmable divide by a power of two
capability. To improve the accuracy of the internal
oscillators, both oscillators may be slaved to the crystal
oscillator.
AX8052F151 can be operated from a 2.2 V to 3.6 V power
supply over a temperature range of –40°C to 85°C, it
consumes 11 45 mA for transmitting, depending on the
output power, 19 20 mA for receiving in high sensitivity
mode and 17 18 mA for receiving in low power mode.
The AX8052F151 features make it an ideal interface for
integration into various battery powered SRD solutions such
as ticketing or as transceiver for telemetric applications e.g.
in sensors. As primary application, the transceiver is
intended for UHF radio equipment in accordance with the
European Telecommunication Standard Institute (ETSI)
specification EN 300 2201 and the US Federal
Communications Commission (FCC) standard CFR47, part
15. The use of AX8052F151 in accordance to FCC Par
15.247, allows for improved range in the 915 MHz band.
Additionally AX8052F151 is compatible with the low
frequency standards of 802.15.4 (ZigBee) and suited for
systems targeting compliance with Wireless MBus
standard EN 137574:2005.
The AX8052F151 sends and receives data in frames. This
standard operation mode is called Frame Mode. Pre and post
ambles as well as checksums can be generated
automatically.
AX8052F151 supports any data rate from 1 kbps to
350 kbps for FSK and MSK, from 1 kbps to 600 kbps for
ASK and from 10 kbps to 600 kbps for PSK. To achieve
optimum performance for specific data rates and
modulation schemes several register settings to configure
the AX8052F151 are necessary, they are outlined in the
following, for details see the AX5051 Programming
Manual.
Spreading and despreading is possible on all data rates and
modulation schemes. The net transfer rate is reduced by a
factor of 15 in this case. For ZigBee either 600 or 300 kbps
modes have to be chosen.
The receiver supports multichannel operation for all data
rates and modulation schemes.
Microcontroller
The AX8052F151 microcontroller core executes the
industry standard 8052 instruction set. Unlike the original
8052, many instructions are executed in a single cycle. The
system clock and thus the instruction rate can be
programmed freely from DC to 20 MHz.
Memory Architecture
The AX8052 Microcontroller features the highest
bandwidth memory architecture of its class. Figure 4 shows
the memory architecture. Three bus masters may initiate bus
cycles:
The AX8052 Microcontroller Core
The Direct Memory Access (DMA) Engine
The Advanced Encryption Standard (AES) Engine
Bus targets include:
Two individual 4 kBytes RAM blocks located in X
address space, which can be simultaneously accessed
and individually shut down or retained during sleep
mode
A 256 Byte RAM located in internal address space,
which is always retained during sleep mode
A 64 kBytes FLASH memory located in code space.
Special Function Registers (SFR) located in internal
address space accessible using direct address mode
instructions
Additional Registers located in X address space
(X Registers)
The upper half of the FLASH memory may also be
accessed through the X address space. This simplifies and
makes the software more efficient by reducing the need for
generic pointers.
NOTE: Generic pointers include, in addition to the
address, an address space tag.
AX8052F151
www.onsemi.com
17
Figure 4. AX8052 Memory Architecture
Arbiter
XRAM
00000FFF
Arbiter
XRAM
10001FFF
Arbiter
X Registers
40007FFF
Arbiter
SFR Registers
80FF
Arbiter
IRAM
00FF
Arbiter
FLASH
0000FFFF
AES DMA
X Bus
AX8052
SFR Bus IRAM Bus Code Bus
Cache
Prefetch
SFR Registers are also accessible through X address
space, enabling indirect access to SFR registers. This allows
driver code for multiple identical peripherals (such as
UARTs or Timers) to be shared.
The 4 word × 16 bit fully associative cache and a prefetch
controller hide the latency of the FLASH.
The AX8052 Memory Architecture is fully parallel. All
bus masters may simultaneously access different bus targets
during each system clock cycle. Each bus target includes an
arbiter that resolves access conflicts. Each arbiter ensures
that no bus master can be starved.
Both 4 kBytes RAM blocks may be individually retained
or switched off during sleep mode. The 256 Byte RAM is
always retained during sleep mode.
The AES engine accesses memory 16 bits at a time. It is
therefore slightly faster to align its buffers on even
addresses.
Memory Map
The AX8052, like the other industry standard 8052
compatible microcontrollers, uses a Harvard architecture.
Multiple address spaces are used to access code and data.
Figure 5 shows the AX8052 memory map.
AX8052F151
www.onsemi.com
18
Figure 5. AX8052 Memory Map
XRAM
FLASH
0000007F
008000FF
01001FFF
2000207F
20803F7F
3F803FFF
40004FFF
50005FFF
60007FFF
8000FBFF
FC00FFFF
Address
Calibration Data
IRAM
IRAM
P (Code) Space
X Space
I (internal) Space
direct access indirect access
SFR
IRAM
SFR
RREG
RREG (nb)
XREG
FLASH
Calibration Data
The AX8052 uses P or Code Space to access its program.
Code space may also be read using the MOVC instruction.
Smaller amounts of data can be placed in the Internal (see
Note) or Data Space. A distinction is made in the upper half
of the Data Space between direct accesses (MOV reg,addr;
MOV addr,reg) and indirect accesses (MOV reg,@Ri;
MOV @Ri,reg; PUSH; POP); Direct accesses are routed to
the Special Function Registers, while indirect accesses are
routed to the internal RAM.
NOTE: The origin of Internal versus External (X) Space
is historical. External Space used to be outside
of the chip on the original 8052
Microcontrollers.
Large amounts of data can be placed in the External or X
Space. It can be accessed using the MOVX instructions.
Special Function Registers, as well as additional
Microcontroller Registers (XREG) and the Radio Registers
(RREG) are also mapped into the X Space.
Detailed documentation of the Special Function Registers
(SFR) and additional Microcontroller Registers can be
found in the AX8052 Programming Manual.
The Radio Registers are documented in the AX5051
Programming Manual. Register Addresses given in the
AX5051 Programming Manual are relative to the beginning
of RREG, i.e. 0x4000 must be added to these addresses. It
is recommended that the provided AX8052F151.h header
file is used; Radio Registers are prefixed with AX5051
_ in
the AX8052F151.h header file to avoid clashes of
samename Radio Registers with AX8052 registers.
Normally, accessing Radio Registers through the RREG
address range is adequate. Since Radio Register accesses
have a higher latency than other AX8052 registers, the
AX8052 provides a method for nonblocking access to the
Radio Registers. Accessing the RREG (nb) address range
initiates a Radio Register access, but does not wait for its
completion. The details of mechanism is documented in the
Radio Interface section of the AX8052 Programming
Manual.
The FLASH memory is organized as 64 pages of 1 kBytes
each. Each page can be individually erased. The write word
size is 16 Bits. The last 1 kByte page is dedicated to factory
calibration data and should not be overwritten.
Power Management
The microcontroller power mode can be selected
independently from the transceiver. The microcontroller
supports the following power modes:

AX8052F151-2-TB05

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
RF System on a Chip - SoC RF-MICROCONTROLLER
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet