Pin Connections
MC13192/MC13193 Technical Data, Rev. 3.1
16 Freescale Semiconductor
Figure 10. Pin Connections (Top View)
1
2
3
GPIO3
GPIO2
GPIO1
RST
RXTXEN
ATTN
CLKO
SPICLK
4
5
6
7
8
NC
RFIN+
NC
PAO+
PAO-
SM
GPIO4
RFIN-
VDDINT
GPIO5
VDDD
IRQ
CE
MISO
MOSI
GPIO6
12 13 14 15 1611109
24
23
22
21
20
19
18
17
VDDA
VBATT
VDDVCO
VDDLO1
VDDLO2
XTAL2
XTAL1
GPIO7
EP
29 28 27 26 25303132
MC13192/
MC13193
Applications Information
MC13192/MC13193 Technical Data, Rev. 3.1
Freescale Semiconductor 17
8 Applications Information
This section provides application specific information regarding crystal oscillator reference frequency, a
basic design example for interfacing the MC13192/MC13193 to an MCU and recommended crystal usage.
8.1 Crystal Oscillator Reference Frequency
The 802.15.4 Standard requires that several frequency tolerances be kept within ± 40 ppm accuracy. This
means that a total offset up to 80 ppm between transmitter and receiver will still result in acceptable
performance. The MC13192/MC13193 transceiver provides onboard crystal trim capacitors to assist in
meeting this performance.
The primary determining factor in meeting this specification is the tolerance of the crystal oscillator
reference frequency. A number of factors can contribute to this tolerance and a crystal specification will
quantify each of them:
1. The initial (or make) tolerance of the crystal resonant frequency itself.
2. The variation of the crystal resonant frequency with temperature.
3. The variation of the crystal resonant frequency with time, also commonly known as aging.
4. The variation of the crystal resonant frequency with load capacitance, also commonly known as
pulling. This is affected by:
a) The external load capacitor values - initial tolerance and variation with temperature.
b) The internal trim capacitor values - initial tolerance and variation with temperature.
c) Stray capacitance on the crystal pin nodes - including stray on-chip capacitance, stray package
capacitance and stray board capacitance; and its initial tolerance and variation with
temperature.
Freescale requires the use of a 16 MHz crystal with a <9 pF load capacitance. The MC13192/MC13193
does not contain a reference divider, so 16 MHz is the only frequency that can be used. A crystal requiring
higher load capacitance is prohibited because a higher load on the amplifier circuit may compromise its
performance. The crystal manufacturer defines the load capacitance as that total external capacitance seen
across the two terminals of the crystal. The oscillator amplifier configuration used in the
MC13192/MC13193 requires two balanced load capacitors from each terminal of the crystal to ground.
As such, the capacitors are seen to be in series by the crystal, so each must be <18 pF for proper loading.
In the reference schematic, the external load capacitors are shown as 6.8 pF each, used in conjunction with
a crystal that requires an 8 pF load capacitance. The default internal trim capacitor value (2.4 pF) and stray
capacitance total value (6.8 pF) sum up to 9.2 pF giving a total of 16 pF. The value for the stray capacitance
was determined empirically assuming the default internal trim capacitor value and for a specific board
layout. A different board layout may require a different external load capacitor value. The on-chip trim
capability may be used to determine the closest standard value by adjusting the trim value via the SPI and
observing the frequency at CLKO. Each internal trim load capacitor has a trim range of approximately
5 pF in 20 fF steps.
Initial tolerance for the internal trim capacitance is approximately ±15%.
Applications Information
MC13192/MC13193 Technical Data, Rev. 3.1
18 Freescale Semiconductor
Since the MC13192/MC13193 contains an on-chip reference frequency trim capability, it is possible to
trim out virtually all of the initial tolerance factors and put the frequency within 0.12 ppm on a
board-by-board basis.
A tolerance analysis budget may be created using all the previously stated factors. It is an engineering
judgment whether the worst case tolerance will assume that all factors will vary in the same direction or if
the various factors can be statistically rationalized using RSS (Root-Sum-Square) analysis. The aging
factor is usually specified in ppm/year and the product designer can determine how many years are to be
assumed for the product lifetime. Taking all of the factors into account, the product designer can determine
the needed specifications for the crystal and external load capacitors to meet the 802.15.4 Standard.
8.2 Design Example
Figure 11 shows a basic application schematic for interfacing the MC13192/MC13193 with an MCU.
Table 9 lists the Bill of Materials (BOM).
The MC13192/MC13193 has differential RF inputs and outputs that are well suited to balanced printed
wire antenna structures. Alternatively, as in the application circuit, a printed wire antenna, a chip antenna,
or other single-ended structures can be used with commercially available chip baluns or microstrip
equivalents. PAO+ and PAO- require a DC connection to VDDA (the analog regulator output) through AC
blocking elements. This is accomplished through the baluns in the referenced design.
The 16 MHz crystal should be mounted close to the MC13192/MC13193 because the crystal trim default
assumes that the listed KDS Daishinku crystal (see Table 10) and the 6.8 pF load capacitors shown are
used. If a different crystal is used, it should have a specified load capacitance (stray capacitance, etc.) of
9 pF or less. Other crystals are listed in Section 8.3, “Crystal Requirements.
VDDA is an analog regulator output used to supply only the onboard PA (PAO+ and PAO-) and VDDLO1
and VDDLO2 pins. VDDA should not be used to power devices external to the transceiver chip. Bypassing
capacitors are critical and should be placed close to the device. Unused pins should be grounded as shown.
The SPI connections to the MCU include CE, MOSI, MISO, and SPICLK. The SPI can run at a frequency
of 8 MHz or less. Optionally, CLKO can provide a clock to the MCU. The CLKO frequency is
programmable via the SPI and has a default of 32.786+ kHz (16 MHz / 488). The ATTN
line can be driven
by a GPIO from the MCU (as shown) or can also be controlled by a switch or other hardware. The latter
approach allows the MCU to be put into a sleep mode and then awakened by CLKO when the ATTN
line
wakes up the MC13192/MC13193. RXTXEN is used to initiate receive, transmit or CCA/ED sequences
under MCU control. RXTXEN must be controlled by an MCU GPIO with the connection shown. Device
reset (RST
) is controlled through a connection to an MCU GPIO.
When the MC13192/MC13193 is used in Stream Mode, as with 802.15.4 MAC/PHY software, the
MC13192/MC13193 GPIO1 functions as an “Out of Idle” indicator and GPIO2 functions as a “CRC
Valid” / Clear Channel Assessment (CCA) result indicator and are not available for general purpose use.

MC13193FCR2

Mfr. #:
Manufacturer:
NXP / Freescale
Description:
RF Transceiver ABEL ZIGBEE TRANS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet