64MB, 128MB, 256MB (x64, DR)
144-PIN SDRAM SODIMM
09005aef8077d63a Micron Technology, Inc., reserves the right to change products or specifications without notice.
SD8C8_16_32x64HG.fm - Rev. C 6/04 EN
4 ©2004 Micron Technology, Inc. All rights reserved.
Table 6: Pin Descriptions
Pin numbers may not correlate with symbols; for more information refer to the Pin Assignment tables on page 3
PIN NUMBERS SYMBOL TYPE DESCRIPTION
65, 66, 67 RAS#, CAS#,
WE#
Input
Command Inputs: RAS#, CAS#, and WE# (along with S#) define the
command being entered.
61, 74 CK0, CK1 Input
Clock: CK is driven by the system clock. All SDRAM input signals
are sampled on the positive edge of CK. CK also increments the
internal burst counter and controls the output registers.
62, 68 CKE0, CKE1 Input
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CK
signal. Deactivating the clock provides PRECHARGE, POWER-
DOWN, and SELF REFRESH operation (all device banks idle),
ACTIVE POWER-DOWN (row ACTIVE in any device bank), or CLOCK
SUSPEND operation (burst access in progress). CKE is synchronous
except after the device enters power-down and self refresh
modes, where CKE becomes asynchronous until after exiting the
same mode. The input buffers, including CK, are disabled during
power-down and self refresh modes, providing low standby
power.
69, 71 S0#, S1# Input
Chip Select: S# enables (registered LOW) and disables (registered
HIGH) the command decoder. All commands are masked when S#
is registered HIGH. S# is considered part of the command code.
23, 24, 25, 26, 115, 116, 117,
118
DQMB0–DQMB7 Input
Input/Output Mask: DQMB is an input mask signal for write
accesses and an output enable signal for read accesses. Input data
is masked when DQMB is sampled HIGH during a WRITE cycle. The
output buffers are placed in a High-Z state (two-clock latency)
when DQMB is sampled HIGH during a READ cycle.
106, 110 BA0, BA1 Input
Bank Address: BA0 and BA1 define to which device bank the
ACTIVE, READ, WRITE, or PRECHARGE command is being applied.
29, 30, 31,32, 33, 34,
70 (256MB), 103, 104, 105,
109, 111, 112
A0–A11
(64MB, 128MB)
A0–A12
(256MB)
Input
Address Inputs: Provide the row address for ACTIVE commands,
and the column address and auto precharge bit (A10) for READ/
WRITE commands, to select one location out of the memory array
in the respective device bank. A10 sampled during a PRECHARGE
command determines whether the PRECHARGE applies to one
device bank (A10 LOW, device bank selected by BA0, BA1) or all
device banks (A10 HIGH). Address inputs also provide the op-code
during a MODE REGISTER SET command.
142 SCL Input
Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
141 SDA Input/
Output
Serial Presence-Detect Data: SDA is a bidirectional pin used to
transfer addresses and data into and out of the presence-detect
portion of the module.
3–10, 13–20, 37– 44, 47–54,
83– 90, 93–100, 121–128,
131–138
DQ0–DQ63 Input/
Output
Data I/O: Data bus.
11, 12, 27, 28, 45, 46, 63, 64,
81, 82, 101, 102, 113, 114,
129, 130, 143, 144
V
DD Supply
Power Supply: +3.3V ±0.3V.
1, 2, 21, 22, 35, 36, 55, 56,
75, 76, 91, 92, 107, 108, 119,
120, 139, 140
V
SS Supply
Ground.
70 (64MB, 128MB), 73 NC
Not Connected: These pins should be left unconnected.
57, 58, 59, 60, 72, 77, 78, 79,
80
DNU
Do Not Use: These pins are not connected on these modules, but
are assigned pins on other modules in this product family.
64MB, 128MB, 256MB (x64, DR)
144-PIN SDRAM SODIMM
09005aef8077d63a Micron Technology, Inc., reserves the right to change products or specifications without notice.
SD8C8_16_32x64HG.fm - Rev. C 6/04 EN
5 ©2004 Micron Technology, Inc. All rights reserved.
Figure 3: Functional Block Diagram
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQMH
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB0
RAS#
CAS#
CKE0
CKE1
CAS#: SDRAMs
CKE: SDRAMs U2-U5
CKE: SDRAMs U6-U9
WE#: SDRAMs
A0-A11: SDRAMs
A0-A12: SDRAMs
BA0-1: SDRAMs
A0-A11 (64MB/128MB)
A0-A12 (256MB)
BA0-1
VDD
VSS
SDRAMs, SPD
SDRAMs, SPD
U2-U5
U6-U9
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQML CS#
DQMB4
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQML
U4
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB6
DQMH CS#
DQMB2
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQML
U3
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB5
DQMH CS#
DQMB1
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DQML
U5
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQMB7
DQMH CS#
DQMB3
CK0
DQML
U6
DQMH CS#
DQMH
U7
DQML CS#
DQMH
U8
DQML CS#
DQMH
U9
DQML CS#
CK1
RAS#: SDRAMs
WE#
SERIAL PD
SDA
WP
SCL
A0
A1 A2
S1#
S0#
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
Standard modules use the following SDRAM devices:
MT48LC4M16A2TG(IT) (64MB); MT48LC8M16A2TG(IT) (128MB);
MT48LC16M16A2TG(IT) (256MB)
Lead-free modules use the following SDRAM devices:
MT48LC4M16A2P(IT) (64MB); MT48LC8M16A2P(IT) (128MB);
MT48LC16M16A2P(IT) (256MB)
NOTE:
1. All resistor values are 10unless otherwise specified.
2. Per industry standard, Micron modules use various component speed
grades as referenced in the module part numbering guide at:
www.micron.com/support/numbering.html
.
64MB, 128MB, 256MB (x64, DR)
144-PIN SDRAM SODIMM
09005aef8077d63a Micron Technology, Inc., reserves the right to change products or specifications without notice.
SD8C8_16_32x64HG.fm - Rev. C 6/04 EN
6 ©2004 Micron Technology, Inc. All rights reserved.
General Description
The Micron MT8LSDT864(L)H(I), MT8LSDT1664(L)H(I),
and MT8LSDT3264(L)H(I) are high-speed CMOS,
dynamic random-access, memory modules organized
in a x64 configuration. These modules use SDRAM
devices which are internally configured as quad-bank
DRAMs with a synchronous interface (all signals are
registered on the positive edge of the clock signals CK).
Read and write accesses to SDRAM modules are
burst oriented; accesses start at a selected location and
continue for a programmed number of locations in a
programmed sequence. Accesses begin with the regis-
tration of an ACTIVE command, which is then fol-
lowed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the device bank and row to be
accessed (BA0, BA1 select the device bank; device rows
are selected by A0–A11 for 64MB and 128MB; A0–A12
for 256MB). The address bits registered coincident
with the READ or WRITE command (A0A7 for 64MB;
A0–A8 for 128MB and 256MB) are used to select the
starting device column location for the burst access.
SDRAM modules provide for programmable READ
or WRITE burst lengths of 1, 2, 4, or 8 locations, or the
full page, with a burst terminate option. An auto pre-
charge function may be enabled to provide a self-
timed row precharge that is initiated at the end of the
burst sequence. These modules use an internal pipe-
lined architecture to achieve high-speed operation.
This architecture is compatible with the 2n rule of
prefetch architectures, but it also allows the column
address to be changed on every clock cycle to achieve a
high-speed, fully random access. Precharging one
device bank while accessing one of the other three
device banks will hide the precharge cycles and pro-
vide seamless, high-speed, random access operation.
SDRAM modules are designed to operate in 3.3V,
low-power memory systems. An auto refresh mode is
provided, along with a power-saving, power-down
mode. All inputs, outputs, and clocks are LVTTL-com-
patible.
SDRAM modules offer substantial advances in
DRAM operating performance, including the ability to
synchronously burst data at a high data rate with auto-
matic column-address generation, the ability to inter-
leave between internal banks in order to hide
precharge time, and the capability to randomly change
column addresses on each clock cycle during a burst
access. For more information regarding SDRAM oper-
ation, refer to the 64Mb, 128Mb, or 256Mb SDRAM
component data sheets.
Serial Presence-Detect Operation
SDRAM modules incorporate serial presence-detect
(SPD). The SPD function is implemented using a
2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be pro-
grammed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/WRITE operations
between the master (system logic) and the slave
EEPROM device (DIMM) occur via a standard I
2
C bus
using the DIMM’s SCL (clock) and SDA (data) signals.
Write protect (WP) is tied to ground on the module,
permanently disabling hardware write protect.
Initialization
SDRAM devices must be powered up and initialized
in a predefined manner. Operational procedures other
than those specified may result in undefined opera-
tion. Once power is applied to V
DD and VDDQ (simul-
taneously) and the clock is stable (stable clock is
defined as a signal cycling within timing constraints
specified for the clock pin), the SDRAM requires a
100µs delay prior to issuing any command other than a
COMMAND INHIBIT or NOP. Starting at some point
during this 100µs period and continuing at least
through the end of this period, COMMAND INHIBIT
or NOP commands should be applied.
Once the 100µs delay has been satisfied with at least
one COMMAND INHIBIT or NOP command having
been applied, a PRECHARGE command should be
applied. All device banks must then be precharged,
thereby placing the device in the all banks idle state.
Once in the idle state, two AUTO REFRESH cycles
must be performed. After the AUTO REFRESH cycles
are complete, the SDRAM is ready for mode register
programming. Because the mode register will power
up in an unknown state, it should be loaded prior to
applying any operational command.
Mode Register Definition
The mode register is used to define the specific
mode of operation of the SDRAM. This definition
includes the selection of a burst length, a burst type, a
CAS latency, an operating mode and a write burst
mode, as shown in Figure 4, Mode Register Definition
Diagram, on page 7. The mode register is programmed
via the LOAD MODE REGISTER command and will
retain the stored information until it is programmed
again or the device loses power.

MT8LSDT3264HG-133D2

Mfr. #:
Manufacturer:
Micron
Description:
MODULE SDRAM 256MB 144SODIMM
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union