IR3502B
Page 13 of 38 V3.2
IR3502B THEORY OF OPERATION
Block Diagram
The block diagram of the IR3502B is shown in Figure 7.
VID Control
The control IC allows the processor voltage to be set by a parallel eight bit digital VID bus. The VID codes set the
VDAC as shown in Table 1. The VID pins require an external bias voltage and should not be floated. The VID input
comparators monitor the VID pins and control the Digital-to-Analog Converter (DAC), whose output is sent to the
VDAC buffer amplifier. The output of the buffer amplifier is the VDAC pin. The VDAC voltage, input offsets of error
amplifier and remote sense differential amplifier are post-package trimmed to achieve 0.5% system set-point accuracy
for VID range between 1V to 1.6V. A set-point accuracy of ±5mV and ±8mV is achieved for VID ranges of 0.8V-1V and
0.5V-0.8V respectively. The actual VDAC voltage does not determine the system accuracy, which has a wider
tolerance.
The IR3502B can accept changes in the VID code while operating and vary the VDAC voltage accordingly. The slew
rate of the voltage at the VDAC pin can be adjusted by an external capacitor between VDAC pin and LGND pin. A
resistor connected in series with this capacitor is required to compensate the VDAC buffer amplifier. Digital VID
transitions result in a smooth analog transition of the VDAC voltage and converter output voltage minimizing inrush
currents in the input and output capacitors and overshoot of the output voltage.
Adaptive Voltage Positioning
Adaptive voltage positioning is needed to optimize the output voltage deviations during load transients and the power
dissipation of the load at heavy load. The circuitry related to voltage positioning is shown in Figure 8. The output
voltage is set by the reference voltage VSETPT at the positive input to the error amplifier. This reference voltage can
be programmed to have a constant DC offset below the VDAC by connecting RSETPT between VDAC and VSETPT.
The IVSETPT is controlled by the ROSC.
The average load current information for all the phases is fed back to the control IC through the IIN pin. As shown in
Figure 8, this information is thermally compensated with some gain by a set of buffer and thermal compensation
amplifiers to generate the voltage at the VDRP pin. The VDRP pin is connected to the FB pin through the resistor
R
DRP. Since the error amplifier will force the loop to maintain FB to be equal to the VDAC reference voltage, an
additional current will flow into the FB pin equal to (VDRP-VDAC) / R
DRP. When the load current increases, the VDRP
voltage increases accordingly. More current flows through the feedback resistor R
FB and causes the output to have
more droop. The positioning voltage can be programmed by the resistor R
DRP so that the droop impedance produces
the desired converter output impedance. The offset and slope of the converter output impedance are referenced to and
therefore independent of the VDAC voltage.
Inductor DCR Temperature Compensation
A negative temperature coefficient (NTC) thermistor should be used for inductor DCR temperature compensation. The
thermistor and tuning resistor network connected between the VN and VDRP pins provides a single NTC thermal
compensation. The thermistor should be placed close to the power stage to accurately reflect the thermal performance of
the inductor DCR. The resistor in series with the thermistor is used to reduce the nonlinearity of the thermistor.
Remote Voltage Sensing
VOSEN+ and VOSEN- are used for remote sensing and connected directly to the load. The remote sense differential
amplifier with high speed, low input offset and low input bias current ensures accurate voltage sensing and fast
transient response. There is finite input current at both pins VOSEN+ and VOSEN- due to the internal resistor of the
differential amplifier. This limits the size of the resistors that can be used in series with these pins for acceptable
regulation of the output voltage.
IR3502B
Page 14 of 38 V3.2
UV
400K
+
-
CURRENT
REPORT AMP
VDRP
THERMAL COMP
VDAC
BUFFER AMP
DAC_BUFF
VDRP
200K
+
-
DAC_BUF
100K
VN
200K
+
-
IMON
VCCL
200K
200K
200K
IROSC
VOSEN-
VOSEN-
DISABLE
IO
VCCL UVLO
S
R Q
VID FAULT
FAULT LATCH1
FAULT LATCH1
VDAC
VDAC
VCCL UVLO
VID FAULT LATCH
FAULT LATCH2
1.17V
OV FAULT
OV@OPERATION
VO
OV@OPERATION
OV@START
VCCL UVLO
RESET
OV@START
OC after VRRDY
VCCL UVLO
SS RESET
OPEN SENSE LINE
VCCL UVLO
OPEN DAISY CHAIN
OC before VRRDY
OV FAULT
EAOUT
SS RESET
OPEN VOLTAGE LOOP
VCCL
+
-
+
S
R
Q
+
-
+
-
+
-
25k
+
-
+
-
+
-
+
-
S
R
Q
+
-
+
-
25k
S
R
Q
25k
+
-
+
-
+
-
+
-
+
-
+
-
+
-
S
R Q
+
-
+
-
25k
+
-
+
-
S
R
Q
VID2
VID4
+
-
VID3
S
R
Q
VID7
VID6
PGOOD
SS/DEL
VID5
PHSOUT
CLKOUT
VID0
VID1
ENABLE
VO
VCCLDRV
VRHOT
HOTSET
VCCL
PHSIN
EAOUT
VDAC
VOSEN-
VOSEN+
UV
IIN
VSETPT
FB
DAC_BUF
VCCLVCCL
VID4
VID5
VID6
VID7
VID1
VID2
VID3
1.03
0
VID6
VID7
VID0
VID2
VID3
VID4
VID5
PHSIN
VBOOT
VID0
VID1 VIDSEL
VIDSEL
PHSOUT
IROSC
IROSC
DISABLE
IVOSEN-VIDSEL
PHSOUT
CLKOUT
FAULT
IROSC
+
-
F_VDAC
VID0
DIS
SS CLEARED
FAULT LATCH1
VID INPUT
COMPARATORS
(1/8 SHOWN)
OC
SS RESET
ERROR
AMPLIFIER
DELAY
COMPARATOR
SET
DOMINANT
4.0V
800mV
ENABLE
COMPARATOR
DIGITAL
TO ANALOG
CONVERTER
1.3uS
BLANKING
850mV
VBOOT
(1.1V)
VDAC BUFFER
AMPLIFIER
INTERNAL
VDAC
VDRP
DAC_BUF
SET
DOMINANT
VBOOT
LATCH
VCCL REGULATOR
AMPLIFIER
OVER
VOLTAGE
COMPARATOR
VID SAMPLE
DELAY
COMPARATOR
250nS
BLANKING
VDRP
VCCL OUTPUT
COMPARATOR
ISOURCE
REMOTE SENSE
AMPLIFIER
6.8V
VRHOT COMPARATOR
CURRENT
SOURCE
GENERATOR
OC DELAY
COUNTER
RESET
DOMINANT
POWER OK
LATCH
ISINK
VID FAULT
LATCH
INTEL
0.2V
DISCHARGE
COMPARATOR
80mV
120mV
1.6V
50mV
DYNAMIC
VID
VID
FAULT
SET
DOMINANT
IVOSEN-IVOSEN+
200mV
1.21V
POWER-UP OV
COMPARATOR
0.4V
DYNAMIC VID DETECT
COMPARATOR
6.1V
+
-
SOFT
START
CLAMP
ISETPT
UV CLEARED
FAULT LATCH2
SET
DOMINANT
OC LIMIT
COMPARATOR
1.4V
OPEN SENSE
LINE DETECT
COMPARATORS
60mV
130mV
3mV
4.5uA
3V
OPEN SENSE LINE
0.6V
OPEN DAISY
CHAIN
VCCLDRV-0.2V
OC LIMIT
AMPLIFIER
IDCHG
OPEN SENSE
LINE DETECT
COMPARATORS
DETECTION
PULSE
DETECTION
PULSE
8-Pulse
Delay
1.08V
SET
DOMINANT
OV FAULT
LATCH
1.6V
1.5V
OV@OPERATION
+
-
ROSC/OVP
0.6V
LGND
ROSC BUFFER
AMPLIFIER
VCCLDRV
OV@START
VDAC
VO
VCCLDRV
6.45V
5.45V
315mV
275mV
OV FAULT
Hold
Last VID
FAULT LATCH1
FAULT LATCH2
Figure 7 Block Diagram
IR3502B
Page 15 of 38 V3.2
TABLE 1 VR11 VID TABLE (PART1)
Hex (VID7:VID0) Dec (VID7:VID0) Voltage Hex (VID7:VID0) Dec (VID7:VID0) Voltage
00 00000000 Fault 40 01000000 1.21250
01 00000001 Fault 41 01000001 1.20625
02 00000010 1.60000 42 01000010 1.20000
03 00000011 1.59375 43 01000011 1.19375
04 00000100 1.58750 44 01000100 1.18750
05 00000101 1.58125 45 01000101 1.18125
06 00000110 1.57500 46 01000110 1.17500
07 00000111 1.56875 47 01000111 1.16875
08 00001000 1.56250 48 01001000 1.16250
09 00001001 1.55625 49 01001001 1.15625
0A 00001010 1.55000 4A 01001010 1.15000
0B 00001011 1.54375 4B 01001011 1.14375
0C 00001100 1.53750 4C 01001100 1.13750
0D 00001101 1.53125 4D 01001101 1.13125
0E 00001110 1.52500 4E 01001110 1.12500
0F 00001111 1.51875 4F 01001111 1.11875
10 00010000 1.51250 50 01010000 1.11250
11 00010001 1.50625 51 01010001 1.10625
12 00010010 1.50000 52 01010010 1.10000
13 00010011 1.49375 53 01010011 1.09375
14 00010100 1.48750 54 01010100 1.08750
15 00010101 1.48125 55 01010101 1.08125
16 00010110 1.47500 56 01010110 1.07500
17 00010111 1.46875 57 01010111 1.06875
18 00011000 1.46250 58 01011000 1.06250
19 00011001 1.45625 59 01011001 1.05625
1A 00011010 1.45000 5A 01011010 1.05000
1B 00011011 1.44375 5B 01011011 1.04375
1C 00011100 1.43750 5C 01011100 1.03750
1D 00011101 1.43125 5D 01011101 1.03125
1E 00011110 1.42500 5E 01011110 1.02500
1F 00011111 1.41875 5F 01011111 1.01875
20 00100000 1.41250 60 01100000 1.01250
21 00100001 1.40625 61 01100001 1.00625
22 00100010 1.40000 62 01100010 1.00000
23 00100011 1.39375 63 01100011 0.99375
24 00100100 1.38750 64 01100100 0.98750
25 00100101 1.38125 65 01100101 0.98125
26 00100110 1.37500 66 01100110 0.97500
27 00100111 1.36875 67 01100111 0.96875
28 00101000 1.36250 68 01101000 0.96250
29 00101001 1.35625 69 01101001 0.95625
2A 00101010 1.35000 6A 01101010 0.95000
2B 00101011 1.34375 6B 01101011 0.94375
2C 00101100 1.33750 6C 01101100 0.93750
2D 00101101 1.33125 6D 01101101 0.93125
2E 00101110 1.32500 6E 01101110 0.92500
2F 00101111 1.31875 6F 01101111 0.91875
30 00110000 1.31250 70 01110000 0.91250
31 00110001 1.30625 71 01110001 0.90625
32 00110010 1.30000 72 01110010 0.90000
33 00110011 1.29375 73 01110011 0.89375
34 00110100 1.28750 74 01110100 0.88750
35 00110101 1.28125 75 01110101 0.88125
36 00110110 1.27500 76 01110110 0.87500
37 00110111 1.26875 77 01110111 0.86875
38 00111000 1.26250 78 01111000 0.86250
39 00111001 1.25625 79 01111001 0.85625
3A 00111010 1.25000 7A 01111010 0.85000
3B 00111011 1.24375 7B 01111011 0.84375
3C 00111100 1.23750 7C 01111100 0.83750
3D 00111101 1.23125 7D 01111101 0.83125
3E 00111110 1.22500 7E 01111110 0.82500
3F 00111111 1.21875 7F 01111111 0.81875

IR3502BMTRPBF

Mfr. #:
Manufacturer:
Infineon Technologies
Description:
Power Management Specialized - PMIC X-PHASE CONTROL IC AMD SVID CTRL IC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet