REV. 0
–16–
ADSP-2186M
These 32 words are used to set up the BDMA to load in the
remaining program code. The BCR bit is also set to 1, which
causes program execution to be held off until all 32 words are
loaded into on-chip program memory. Execution then begins at
address 0.
The ADSP-2100 Family development software (Revision 5.02
and later) fully supports the BDMA booting feature and can
generate byte-memory space-compatible boot code.
The IDLE instruction can also be used to allow the processor
to hold off execution while booting continues through the
BDMA interface. For BDMA accesses while in Host Mode, the
addresses to boot memory must be constructed externally to the
ADSP-2186M. The only memory address bit provided by the
processor is A0.
IDMA Port Booting
The ADSP-2186M can also boot programs through its Internal
DMA port. If Mode C = 1, Mode B = 0, and Mode A = 1, the
ADSP-2186M boots from the IDMA port. IDMA feature can
load as much on-chip memory as desired. Program execution is
held off until on-chip program memory location 0 is written to.
Bus Request and Bus Grant
The ADSP-2186M can relinquish control of the data and address
buses to an external device. When the external device requires
access to memory, it asserts the bus request (BR) signal. If the
ADSP-2186M is not performing an external memory access, it
responds to the active BR input in the following processor cycle by:
Three-stating the data and address buses and the PMS, DMS,
BMS, CMS, IOMS, RD, WR output drivers,
Asserting the bus grant (BG) signal, and
Halting program execution.
If Go Mode is enabled, the ADSP-2186M will not halt program
execution until it encounters an instruction that requires an
external memory access.
If the ADSP-2186M is performing an external memory access
when the external device asserts the BR signal, it will not three-
state the memory interfaces nor assert the BG signal until the
processor cycle after the access completes. The instruction does
not need to be completed when the bus is granted. If a single
instruction requires two external memory accesses, the bus will
be granted between the two accesses.
When the BR signal is released, the processor releases the BG
signal, re-enables the output drivers, and continues program
execution from the point at which it stopped.
The bus request feature operates at all times, including when
the processor is booting and when RESET is active.
The BGH pin is asserted when the ADSP-2186M requires the
external bus for a memory or BDMA access, but is stopped.
The other device can release the bus by deasserting bus request.
Once the bus is released, the ADSP-2186M deasserts BG and
BGH and executes the external memory access.
Flag I/O Pins
The ADSP-2186M has eight general purpose programmable
input/output flag pins. They are controlled by two memory
mapped registers. The PFTYPE register determines the direc-
tion, 1 = output and 0 = input. The PFDATA register is used to
read and write the values on the pins. Data being read from a
pin configured as an input is synchronized to the ADSP-2186M’s
clock. Bits that are programmed as outputs will read the value
being output. The PF pins default to input during reset.
In addition to the programmable flags, the ADSP-2186M has five
fixed-mode flags, FI, FO, FL0, FL1, and FL2. FL0–FL2 are
dedicated output flags. FI and FO are available as an alternate
configuration of SPORT1.
Note: Pins PF0, PF1, PF2, and PF3 are also used for device
configuration during reset.
Instruction Set Description
The ADSP-2186M assembly language instruction set has an
algebraic syntax that was designed for ease of coding and read-
ability. The assembly language, which takes full advantage of the
processor’s unique architecture, offers the following benefits:
The algebraic syntax eliminates the need to remember cryptic
assembler mnemonics. For example, a typical arithmetic add
instruction, such as AR = AX0 + AY0, resembles a simple
equation.
Every instruction assembles into a single, 24-bit word that
can execute in a single instruction cycle.
The syntax is a superset ADSP-2100 Family assembly lan-
guage and is completely source and object code compatible
with other family members. Programs may need to be relocated
to utilize on-chip memory and conform to the ADSP-2186M’s
interrupt vector and reset vector map.
Sixteen condition codes are available. For conditional jump,
call, return, or arithmetic instructions, the condition can
be checked and the operation executed in the same instruc-
tion cycle.
Multifunction instructions allow parallel execution of an
arithmetic instruction with up to two fetches or one write to
processor memory space during a single instruction cycle.
DESIGNING AN EZ-ICE-COMPATIBLE SYSTEM
The ADSP-2186M has on-chip emulation support and an
ICE-Port, a special set of pins that interface to the EZ-ICE.
These features allow in-circuit emulation without replacing the
target system processor by using only a 14-pin connection from
the target system to the EZ-ICE. Target systems must have a
14-pin connector to accept the EZ-ICE’s in-circuit probe, a
14-pin plug.
Issuing the chip reset command during emulation causes the
DSP to perform a full chip reset, including a reset of its memory
mode. Therefore, it is vital that the mode pins are set correctly
PRIOR to issuing a chip reset command from the emulator user
interface. If a passive method of maintaining mode information is
being used (as discussed in Setting Memory Modes), it does not
matter that the mode information is latched by an emulator
reset. However, if the RESET pin is being used as a method of
setting the value of the mode pins, the effects of an emulator
reset must be taken into consideration.
One method of ensuring that the values located on the mode
pins are those desired is to construct a circuit like the one shown
in Figure 12. This circuit forces the value located on the Mode
A pin to logic high; regardless of whether it is latched via the
RESET or ERESET pin.
REV. 0
ADSP-2186M
–17–
PROGRAMMABLE I/O
MODE A/PFO
RESET
ERESET
1k
ADSP-2186M
Figure 12. Mode A Pin/EZ-ICE Circuit
See the ADSP-2100 Family EZ-Tools data sheet for complete
information on ICE products.
The ICE-Port interface consists of the following ADSP-2186M
pins: EBR, EINT, EE, EBG, ECLK, ERESET, ELIN, EMS,
and ELOUT
These ADSP-2186M pins must be connected only to the EZ-ICE
connector in the target system. These pins have no function except
during emulation, and do not require pull-up or pull-down
resistors. The traces for these signals between the ADSP-2186M
and the connector must be kept as short as possible, no longer
than 3 inches.
The following pins are also used by the EZ-ICE: BR, BG,
RESET, and GND.
The EZ-ICE uses the EE (emulator enable) signal to take con-
trol of the ADSP-2186M in the target system. This causes the
processor to use its ERESET, EBR, and EBG pins instead of
the RESET, BR, and BG pins. The BG output is three-stated.
These signals do not need to be jumper-isolated in your system.
The EZ-ICE connects to your target system via a ribbon cable
and a 14-pin female plug. The female plug is plugged onto the
14-pin connector (a pin strip header) on the target board.
Target Board Connector for EZ-ICE Probe
The EZ-ICE connector (a standard pin strip header) is shown in
Figure 13. You must add this connector to your target board
design if you intend to use the EZ-ICE. Be sure to allow enough
room in your system to fit the EZ-ICE probe onto the 14-pin
connector.
1
2
34
56
7
8
9
10
11 12
13
14
GND
KEY (NO PIN)
RESET
BR
BG
TOP VIEW
EBG
EBR
ELOUT
EE
EINT
ELIN
ECLK
EMS
ERESET
Figure 13. Target Board Connector for EZ-ICE
The 14-pin, 2-row pin strip header is keyed at the Pin 7 loca-
tion—Pin 7 must be removed from the header. The pins must
be 0.025 inch square and at least 0.20 inch in length. Pin spac-
ing should be 0.1 × 0.1 inches. The pin strip header must have
at least 0.15 inch clearance on all sides to accept the EZ- ICE
probe plug.
Pin strip headers are available from vendors such as 3M,
McKenzie, and Samtec.
Target Memory Interface
For your target system to be compatible with the EZ-ICE
emulator, it must comply with the memory interface guidelines
listed below.
PM, DM, BM, IOM, AND CM
Design your Program Memory (PM), Data Memory (DM), Byte
Memory (BM), I/O Memory (IOM), and Composite Memory
(CM) external interfaces to comply with worst case device tim-
ing requirements and switching characteristics as specified in
this data sheet. The performance of the EZ- ICE may approach
published worst-case specification for some memory access
timing requirements and switching characteristics.
Note: If your target does not meet the worst-case chip specifica-
tion for memory access parameters, you may not be able to
emulate your circuitry at the desired CLKIN frequency. Depend-
ing on the severity of the specification violation, you may have
trouble manufacturing your system as DSP components statisti-
cally vary in switching characteristic and timing requirements
within published limits.
Restriction: All memory strobe signals on the ADSP-2186M
(RD, WR, PMS, DMS, BMS, CMS, and IOMS) used in your
target system must have 10 k pull-up resistors connected when
the EZ-ICE is being used. The pull-up resistors are necessary
because there are no internal pull-ups to guarantee their state
during prolonged three-state conditions resulting from typical
EZ-ICE debugging sessions. These resistors may be removed at
your option when the EZ-ICE is not being used.
Target System Interface Signals
When the EZ-ICE board is installed, the performance on some
system signals change. Design your system to be compatible
with the following system interface signal changes introduced by
the EZ-ICE board:
EZ-ICE emulation introduces an 8 ns propagation delay
between your target circuitry and the DSP on the RESET
signal.
EZ-ICE emulation introduces an 8 ns propagation delay
between your target circuitry and the DSP on the BR signal.
EZ-ICE emulation ignores RESET and BR when single-
stepping.
EZ-ICE emulation ignores RESET and BR when in Emulator
Space (DSP halted).
EZ-ICE emulation ignores the state of target BR in certain
modes. As a result, the target system may take control of the
DSP’s external memory bus only if bus grant (BG) is asserted
by the EZ- ICE board’s DSP.
REV. 0
–18–
ADSP-2186M–SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS
K Grade B Grade
Parameter Min Max Min Max Unit
V
DDINT
2.37 2.63 2.25 2.75 V
V
DDEXT
2.37 3.6 2.25 3.6 V
V
INPUT
1
V
IL
= –0.3 V
IH
= +3.6 V
IL
= –0.3 V
IH
= +3.6 V
T
AMB
0 +70 –40 +85 °C
NOTES
1
The ADSP-2186M is 3.3 V tolerant (always accepts up to 3.6 V max V
IH
), but voltage compliance (on outputs, V
OH
) depends on the input V
DDEXT
; because V
OH
(max)
V
DDEXT
(max). This applies to bidirectional pins (D0–D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A1–A13, PF0–PF7) and input only pins (CLKIN, RESET,
BR, DR0, DR1, PWD).
Specifications subject to change without notice.
ELECTRICAL CHARACTERISTICS
K/B Grades
Parameter Test Conditions Min Typ Max Unit
V
IH
Hi-Level Input Voltage
1, 2
@ V
DDINT
= max 1.5 V
V
IH
Hi-Level CLKIN Voltage @ V
DDINT
= max 2.0 V
V
IL
Lo-Level Input Voltage
1, 3
@ V
DDINT
= min 0.7 V
V
OH
Hi-Level Output Voltage
1, 4, 5
@ V
DDEXT
= min, I
OH
= –0.5 mA 2.0 V
@ V
DDEXT
= 3.0 V, I
OH
= –0.5 mA 2.4 V
@ V
DDEXT
= min, I
OH
= –100 µA
6
V
DDEXT
– 0.3 V
V
OL
Lo-Level Output Voltage
1, 4, 5
@ V
DDEXT
= min, I
OL
= 2 mA 0.4 V
I
IH
Hi-Level Input Current
3
@ V
DDINT
= max, V
IN
= 3.6 V 10 µA
I
IL
Lo-Level Input Current
3
@ V
DDINT
= max, V
IN
= 0 V 10 µA
I
OZH
Three-State Leakage Current
7
@ V
DDEXT
= max, V
IN
= 3.6 V
8
10 µA
I
OZL
Three-State Leakage Current
7
@ V
DDEXT
= max, V
IN
= 0 V
8
10 µA
I
DD
Supply Current (Idle)
9
@ V
DDINT
= 2.5, t
CK
= 15 ns 9 mA
I
DD
Supply Current (Idle)
9
@ V
DDINT
= 2.5, t
CK
= 13.3 ns 10 mA
I
DD
Supply Current (Dynamic)
10
@ V
DDINT
= 2.5, t
CK
= 15 ns
11
, T
AMB
= 25°C35mA
I
DD
Supply Current (Dynamic)
10
@ V
DDINT
= 2.5, t
CK
= 13.3 ns
11
, T
AMB
= 25°C38mA
I
DD
Supply Current (Power-Down)
12
@ V
DDINT
= 2.5, T
AMB
= 25°C in Lowest 100 µA
Power Mode
C
I
Input Pin Capacitance
3, 6
@ V
IN
= 2.5 V, f
IN
= 1.0 MHz, T
AMB
= 25°C8pF
C
O
Output Pin Capacitance
6, 7, 12, 13
@ V
IN
= 2.5 V, f
IN
= 1.0 MHz, T
AMB
= 25°C8pF
NOTES
1
Bidirectional pins: D0–D23, RFS0, RFS1, SCLK0, SCLK1, TFS0, TFS1, A1–A13, PF0–PF7.
2
Input only pins: RESET, BR, DR0, DR1, PWD.
3
Input only pins: CLKIN, RESET, BR, DR0, DR1, PWD.
4
Output pins: BG, PMS, DMS, BMS, IOMS, CMS, RD, WR, PWDACK, A0, DT0, DT1, CLKOUT, FL2–0, BGH.
5
Although specified for TTL outputs, all ADSP-2186M outputs are CMOS-compatible and will drive to V
DDEXT
and GND, assuming no dc loads.
6
Guaranteed but not tested.
7
Three-statable pins: A0–A13, D0–D23, PMS, DMS, BMS, IOMS, CMS, RD, WR, DT0, DT1, SCLK0, SCLK1, TFS0, TFS1, RFS0, RFS1, PF0–PF7.
8
0 V on BR.
9
Idle refers to ADSP-2186M state of operation during execution of IDLE instruction. Deasserted pins are driven to either V
DD
or GND.
10
I
DD
measurement taken with all instructions executing from internal memory. 50% of the instructions are multifunction (Types 1, 4, 5, 12, 13, 14), 30% are Type 2
and Type 6, and 20% are idle instructions.
11
V
IN
= 0 V and 3 V. For typical figures for supply currents, refer to Power Dissipation section.
12
See Chapter 9 of the ADSP-2100 Family User’s Manual for details.
13
Output pin capacitance is the capacitive load for any three-stated output pin.
Specifications subject to change without notice.

ADSP-2186MBSTZ266R

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Digital Signal Processors & Controllers - DSP, DSC 16B 75 MIPS 2.5V 2 Serial Prts Host Prt
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union