PROGRAMMABLE CLOCK GENERATOR 22 MARCH 3, 2017
5P49V5907 DATASHEET
Overdriving the XIN/REF Interface
LVCMOS Driver
The XIN/REF input can be overdriven by an LVCMOS driver
or by one side of a differential driver through an AC coupling
capacitor. The XOUT pin can be left floating. The amplitude of
the input signal should be between 500mV and 1.2V and the
slew rate should not be less than 0.2V/ns. Figure General
Diagram for LVCMOS Driver to XTAL Input Interface shows an
example of the interface diagram for a LVCMOS driver.
This configuration has three properties; the total output
impedance of Ro and Rs matches the 50 ohm transmission
line impedance, the Vrx voltage is generated at the CLKIN
inputs which maintains the LVCMOS driver voltage level
across the transmission line for best S/N and the R1-R2
voltage divider values ensure that the clock level at XIN is less
than the maximum value of 1.2V.
General Diagram for LVCMOS Driver to XTAL Input Interface
Table 24Nominal Voltage Divider Values vs LVCMOS VDD for
XIN
shows resistor values that ensure the maximum drive
level for the XIN/REF port is not exceeded for all combinations
of 5% tolerance on the driver VDD, the VersaClock VDDA and
5% resistor tolerances. The values of the resistors can be
adjusted to reduce the loading for slower and weaker
LVCMOS driver by increasing the voltage divider attenuation
as long as the minimum drive level is maintained over all
tolerances. To assist this assessment, the total load on the
driver is included in the table.
Table 24: Nominal Voltage Divider Values vs LVCMOS VDD for XIN
XOUT
XIN / REF
R1
R2
C3
0. 1 uF
V_XIN
LV CMOS
VDD
Ro
Ro + Rs = 50 ohms
Rs Zo = 50 Ohm
LVCMOS Driver VDD Ro+Rs R1 R2 V_XIN (peak) Ro+Rs+R1+R2
3.3 50.0 130 75 0.97 255
2.5 50.0 100 100 1.00 250
1.8 50.0 62 130 0.97 242
MARCH 3, 2017 23 PROGRAMMABLE CLOCK GENERATOR
5P49V5907 DATASHEET
LVPECL Driver
Figure General Diagram for LVPECL Driver to XTAL Input
Interface shows an example of the interface diagram for a
+3.3V LVPECL driver. This is a standard LVPECL termination
with one side of the driver feeding the XIN/REF input. It is
recommended that all components in the schematics be
placed in the layout; though some components might not be
used, they can be utilized for debugging purposes. The
datasheet specifications are characterized and guaranteed by
using a quartz crystal as the input. If the driver is 2.5V
LVPECL, the only change necessary is to use the appropriate
value of R3.
Table 25
Nominal Voltage Divider Values vs Driver VDD
shows resistor values that ensure the maximum drive level for
the CLKIN port is not exceeded for all combinations of 5%
tolerance on the driver VDD, the VersaClock Vddo_0 and 5%
resistor tolerances. The values of the resistors can be
adjusted to reduce the loading for slower and weaker
LVCMOS driver by increasing the impedance of the R1-R2
divider. To assist this assessment, the total load on the driver
is included in the table.
Table 25: Nominal Voltage Divider Values vs Driver VDD
+3 .3 V LV PE CL Dr iv er
Zo = 50 Ohm
Zo = 50 Ohm
R1
50
R2
50
R3
50
XOUT
XIN / REF
C1
0. 1 uF
LVCMOS Driver VDD Ro+Rs R1 R2 Vrx (peak) Ro+Rs+R1+R2
3.3 50.0 130 75 0.97 255
2.5 50.0 100 100 1.00 250
1.8 50.0 62 130 0.97 242
PROGRAMMABLE CLOCK GENERATOR 24 MARCH 3, 2017
5P49V5907 DATASHEET
LVDS Driver Termination
For a general LVDS interface, the recommended value for the
termination impedance (Z
T
) is between 90. and 132. The
actual value should be selected to match the differential
impedance (Zo) of your transmission line. A typical
point-to-point LVDS design uses a 100
parallel resistor at the
receiver and a 100
. differential transmission-line
environment. In order to avoid any transmission-line reflection
issues, the components should be surface mounted and must
be placed as close to the receiver as possible. The standard
termination schematic as shown in figure
Standard
Termination
or the termination of figure Optional Termination
can be used, which uses a center tap capacitance to help filter
common mode noise. The capacitor value should be
approximately 50pF. In addition, since these outputs are LVDS
compatible, the input receiver's amplitude and common-mode
input range should be verified for compatibility with the IDT
LVDS output. If using a non-standard termination, it is
recommended to contact IDT and confirm that the termination
will function as intended. For example, the LVDS outputs
cannot be AC coupled by placing capacitors between the
LVDS outputs and the 100 ohm shunt load. If AC coupling is
required, the coupling caps must be placed between the 100
ohm shunt termination and the receiver. In this manner the
termination of the LVDS output remains DC coupled
LVDS
Driver
LVDS
Driver
LVDS
Receiver
LVDS
Receiver
Z
T
C
Z
O
Z
T
Z
O
Z
T
Z
T
2
Z
T
2
Standard Termination
Optional Termination

5P49V5907B000NDGI

Mfr. #:
Manufacturer:
IDT
Description:
Clock Generators & Support Products XTAL 1 LVCMOS PCIe 4 Out 7 Diff 3 Pairs
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet