13
COMMERCIAL TEMPERATURE RANGE
IDT72V3686/72V3696/72V36106 3.3V CMOS TRIPLE BUS SyncFIFO
TM
WITH BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65, 536 x 36
CSA W/RA ENA MBA CLKA LOOP Data A(A0-A35) I/O PORT FUNCTION
H X X X X H High-Impedance None
L H L X X H Input None
LH H L H Input FIFO1 write
LH H H H Input Mail1 write
L L L L X H Output None
LL H L H Output FIFO2 read
L L L H X H Output None
LL H H H Output Mail2 read (set MBF2 HIGH)
LH H L L Output Loop the data output of FIFO2 to input
of FIFO1 only
LL H L L Output Loop the data output of FIFO2 to input
of FIFO1 and put data on Port A
CSB RENB MBB CLKB Data B (B0-B17) Outputs PORT FUNCTION
H X X X High-Impedance None
L L L X Output None
LH L Output FIFO1 read
L L H X Output None
LH H Output Mail1 read (set MBF1 HIGH)
TABLE 4
PORT C ENABLE FUNCTION TABLE
TABLE 3
PORT B ENABLE FUNCTION TABLE
WENC MBC CLKC Data C (C0-C17) Inputs PORT FUNCTION
HL Input FIFO2 write
HH Input Mail2 write
L L X Input None
L H X Input None
Parity function allows the user to select the location of the parity bits in the word
loaded into the parallel port (A0-An) during programming of the flag offset values.
If Interspersed Parity is selected then during parallel programming of the flag
offset values, the device will ignore data line A8. If Non-Interspersed Parity is
selected then data line A8 will become a valid bit. If Interspersed Parity is selected
serial programming of the offset values is not permitted, only parallel program-
ming can be done.
— SERIAL LOAD
To program the X1, X2, Y1, and Y2 registers serially, initiate a Master Reset
with FS2 LOW, FS0/SD LOW and FS1/SEN HIGH during the LOW-to-HIGH
transition of MRS1 and MRS2. After this reset is complete, the X and Y register
values are loaded bit-wise through the FS0/SD input on each LOW-to-HIGH
transition of CLKA that the FS1/SEN input is LOW. There are 56-, 60-, or 64-
bit writes needed to complete the programming for the IDT72V3686,
IDT72V3696, or IDT72V36106, respectively. The four registers are written in
the order Y1, X1, Y2 and finally, X2. The first-bit write stores the most significant
bit of the Y1 register and the last-bit write stores the least significant bit of the X2
register. Each register value can be programmed from 1 to 16,380
(IDT72V3686), 1 to 32,764 (IDT72V3696), or 1 to 65,532 (IDT72V36106).
When the option to program the Offset registers serially is chosen, the Port
A Full/Input Ready (FFA/IRA) flag remains LOW until all register bits are written.
FFA/IRA is set HIGH by the LOW-to-HIGH transition of CLKA after the last bit
is loaded to allow normal FIFO1 operation. The Port B Full/Input Ready (FFC/
IRC) flag also remains LOW throughout the serial programming process, until
all register bits are written. FFC/IRC is set HIGH by the LOW-to-HIGH transition
of CLKC after the last bit is loaded to allow normal FIFO2 operation.
See Figure 9 timing diagram, Serial Programming of the Almost-Full Flag
and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT
Modes).
FIFO WRITE/READ OPERATION
The state of the Port A data (A0-A35) outputs is controlled by Port A Chip
Select (CSA) and Port A Write/Read Select (W/RA). The A0-A35 outputs are
in the high-impedance state when either CSA or W/RA is HIGH. The A0-A35
outputs are active when both CSA and W/RA are LOW.
Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH
transition of CLKA when CSA is LOW, W/RA is HIGH, ENA is HIGH, MBA is
LOW, and FFA/IRA is HIGH. Data is read from FIFO2 to the A0-A35 outputs
by a LOW-to-HIGH transition of CLKA when CSA is LOW, W/RA is LOW, ENA
is HIGH, MBA is LOW, and EFA/ORA is HIGH (see Table 2). FIFO reads and
writes on Port A are independent of any concurrent Port B or Port C
operation.
The state of the Port B data (B0-B17) outputs is controlled by the Port B
Chip Select (CSB). The B0-B17 outputs are in the high-impedance state
when CSB is HIGH. The B0-B17 outputs are active when CSB is LOW.
Data is read from FIFO1 to the B0-B17 outputs by a LOW-to-HIGH
transition of CLKB when CSB is LOW, RENB is HIGH, MBB is LOW and EFB/
TABLE 2
PORT A ENABLE FUNCTION TABLE
14
COMMERCIAL TEMPERATURE RANGE
IDT72V3686/72V3696/72V36106 3.3V CMOS TRIPLE BUS SyncFIFO
TM
WITH BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65, 536 x 36
TABLE 5
FIFO1 FLAG OPERATION (IDT Standard and FWFT modes)
TABLE 6
FIFO2 FLAG OPERATION (IDT Standard and FWFT modes)
Synchronized Synchronized
Number of Words in FIFO Memory
(1,2)
to CLKB to CLKA
IDT72V3686
(3)
IDT72V3696
(3)
IDT72V36106
(3)
EFB/ORB AEB AFA FFA/IRA
000LLHH
1 to X1 1 to X1 1 to X1 H L H H
(X1+1) to [16,384-(Y1+1)] (X1+1) to [32,768-(Y1+1)] (X1+1) to [65,536-(Y1+1)] H H H H
(16,384-Y1) to 16,383 (32,768-Y1) to 32,767 (65,536-Y1) to 65,535 H H L H
16,384 32,768 65,536 H H L L
NOTES:
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation
necessary), it is not included in the FIFO memory count.
3. X1 is the almost-empty offset for FIFO1 used by AEB. Y1 is the almost-full offset for FIFO1 used by AFA. Both X1 and Y1 are selected during a FIFO1 reset or port A programming.
4. The ORB and IRA functions are active during FWFT mode; the EFB and FFA functions are active in IDT Standard mode.
NOTES:
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read operation
necessary), it is not included in the FIFO memory count.
3. X2 is the almost-empty offset for FIFO2 used by AEA. Y2 is the almost-full offset for FIFO2 used by AFC. Both X2 and Y2 are selected during a FIFO2 reset or port A programming.
4. The ORA and IRC functions are active during FWFT mode; the EFA and FFC functions are active in IDT Standard mode.
Synchronized Synchronized
Number of Words in FIFO Memory
(1,2)
to CLKA to CLKC
IDT72V3686
(3)
IDT72V3696
(3)
IDT72V36106
(3)
EFA/ORA AEA AFC FFC/IRC
000LLHH
1 to X2 1 to X2 1 to X2 H L H H
(X2+1) to [16,384-(Y2+1)] (X2+1) to [32,768-(Y2+1)] (X2+1) to [65,536-(Y2+1)] H H H H
(16,384-Y2) to 16,383 (32,768-Y2) to 32,767 (65,536-Y2) to 65,535 H H L H
16,384 32,768 65,536 H H L L
ORB is HIGH (see Table 3). FIFO reads on Port B are independent of any
concurrent Port A and Port C operations.
Data is loaded into FIFO2 from the C0-C17 inputs on a LOW-to-HIGH
transition of CLKC when WENB is HIGH, MBC is LOW, and FFC/IRC is HIGH
(see Table 4). FIFO writes on Port C are independent of any concurrent Port
A and Port B operation.
The setup and hold time constraints for CSA and W/RA with regard to CLKA
as well as CSB with regard to CLKB are only for enabling write and read
operations and are not related to high-impedance control of the data outputs.
If ENA is LOW during a clock cycle, either CSA or W/RA may change states
during the setup and hold time window of the cycle. This is also true for CSB
when RENB is LOW.
When operating the FIFO in FWFT mode and the Output Ready flag is LOW,
the next word written is automatically sent to the FIFO’s output register by the
LOW-to-HIGH transition of the port clock that sets the Output Ready flag HIGH.
When the Output Ready flag is HIGH, subsequent data is clocked to the output
registers only when a read is selected using CSA, W/RA, ENA and MBA at Port
A or using CSB, RENB and MBB at Port B.
When operating the FIFO in IDT Standard mode, the first word will cause the
Empty Flag to change state on the second LOW-to-HIGH transition of the Read
Clock. The data word will not be automatically sent to the output register. Instead,
data residing in the FIFO’s memory array is clocked to the output register only
when a read is selected using CSA, W/RA, ENA and MBA at Port A or using
CSB, RENB and MBB at Port B. Relevant write and read timing diagrams for
Port A can be found in Figure 10 and 15. Relevant read and write timing
diagrams for Port B and Port C, together with Bus-Matching and Endian select
operation, can be found in Figure 11 to 14.
LOOPBACK (LOOP)
A Loopback function is provided on Port A and is selected by setting the LOOP
pin LOW. When the Loop feature is selected, the data output from FIFO2 will be
directed to the data input of FIFO1. If Loop is selected and Port A is set-up for
write operation via the W/RA pin being HIGH, then data output from FIFO2 will
be written to FIFO1, on every LOW-to-HIGH transition of CLKA, provided CSA
is LOW and ENA is HIGH. However, FIFO2 data output will not be placed on
the output Port A (A0-A35). If Port A is set-up for read operation via the W/RA
pin being LOW, then data output from FIFO2 will be written into FIFO1 on every
LOW-to-HIGH transition of CLKA, provided CSA is LOW and ENA is HIGH. Also
FIFO2 data will be output to Port A (A0-A35). When the LOOP pin is HIGH then
Port A operates in the normal manner. Refer to Table 2 for the input set-up of
the Loop feature.
The Loop operation will continue to happen provided that FIFO1 is not full
and FIFO2 is not empty. If during a Loop sequence FIFO1 becomes full then
any data that continues to be read out from FIFO2 will only be placed on the
Port A (A0-A35) lines, (provided that Port A is set-up for read operation). If
during a Loop sequence the FIFO2 becomes empty, then the last word from
FIFO2 will continue to be clocked into FIFO1 until FIFO1 becomes full or until
the Loop function is stopped. The Loop feature can be useful when performing
system debugging and remote loopbacks. See Figures 34 and 35 for Loopback
timing diagrams.
15
COMMERCIAL TEMPERATURE RANGE
IDT72V3686/72V3696/72V36106 3.3V CMOS TRIPLE BUS SyncFIFO
TM
WITH BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65, 536 x 36
SYNCHRONIZED FIFO FLAGS
Each FIFO is synchronized to its port clock through at least two flip-flop stages.
This is done to improve flag signal reliability by reducing the probability of
metastable events when CLKA operates asynchronously with respect to either
CLKB or CLKC. EFA/ORA, AEA, FFA/IRA, and AFA are synchronized to
CLKA. EFB/ORB and AEB are synchronized to CLKB. FFC/IRC and AFC are
synchronized to CLKC. Tables 5 and 6 show the relationship of each port flag
to FIFO1 and FIFO2.
EMPTY/OUTPUT READY FLAGS (EFA/ORA, EFB/ORB)
These are dual purpose flags. In the FWFT mode, the Output Ready (ORA,
ORB) function is selected. When the Output Ready flag is HIGH, new data is
present in the FIFO output register. When the Output Ready flag is LOW, the
previous data word is present in the FIFO output register and attempted FIFO
reads are ignored.
In the IDT Standard mode, the Empty Flag (EFA, EFB) function is selected.
When the Empty Flag is HIGH, data is available in the FIFO’s RAM memory for
reading to the output register. When the Empty Flag is LOW, the previous data
word is present in the FIFO output register and attempted FIFO reads are
ignored.
The Empty/Output Ready flag of a FIFO is synchronized to the port clock that
reads data from its array. For both the FWFT and IDT Standard modes, the FIFO
read pointer is incremented each time a new word is clocked to its output register.
The state machine that controls an Output Ready flag monitors a write pointer
and read pointer comparator that indicates when the FIFO memory status is
empty, empty+1, or empty+2.
In FWFT mode, from the time a word is written to a FIFO, it can be shifted to
the FIFO output register in a minimum of three cycles of the Output Ready flag
synchronizing clock. Therefore, an Output Ready flag is LOW if a word in
memory is the next data to be sent to the FlFO output register and three cycles
of the port clock that reads data from the FIFO have not elapsed since the time
the word was written. The Output Ready flag of the FIFO remains LOW until the
third LOW-to-HIGH transition of the synchronizing clock occurs, simultaneously
forcing the Output Ready flag HIGH and shifting the word to the FIFO output
register.
In IDT Standard mode, from the time a word is written to a FIFO, the Empty
Flag will indicate the presence of data available for reading in a minimum of two
cycles of the Empty Flag synchronizing clock. Therefore, an Empty Flag is LOW
if a word in memory is the next data to be sent to the FlFO output register and
two cycles of the port Clock that reads data from the FIFO have not elapsed since
the time the word was written. The Empty Flag of the FIFO remains LOW until
the second LOW-to-HIGH transition of the synchronizing clock
occurs, forcing
the Empty Flag HIGH; only then can data be read.
A LOW-to-HIGH transition on an Empty/Output Ready flag synchronizing
clock begins the first synchronization cycle of a write if the clock transition occurs
at time tSKEW1 or greater after the write. Otherwise, the subsequent clock cycle
can be
the first synchronization cycle (see Figure 16, 17, 18 and 19).
FULL/INPUT READY FLAGS (FFA/IRA, FFC/IRC)
These are dual purpose flags. In FWFT mode, the Input Ready (IRA and
IRC) function is selected. In IDT Standard mode, the Full Flag (FFA and FFC)
function is selected. For both timing modes, when the Full/Input Ready flag is
HIGH, a memory location is free in the FIFO to receive new data. No memory
locations are free when the Full/Input Ready flag is LOW and attempted writes
to the FIFO are ignored.
The Full/Input Ready flag of a FlFO is synchronized to the port clock that writes
data to its array. For both FWFT and IDT Standard modes, each time a word
is written to a FIFO, its write pointer is incremented. The state machine that
controls a Full/Input Ready flag monitors a write pointer and read pointer
comparator that indicates when the FlFO memory status is full, full-1, or full-2.
From the time a word is read from a FIFO, its previous memory location is ready
to be written to in a minimum of two cycles of the Full/Input Ready flag
synchronizing clock. Therefore, an Full/Input Ready flag is LOW if less than two
cycles of the Full/Input Ready flag synchronizing clock have elapsed since the
next memory write location has been read. The second LOW-to-HIGH transition
on the Full/Input Ready flag synchronizing clock after the read sets the Full/Input
Ready flag HIGH.
A LOW-to-HIGH transition on a Full/Input Ready flag synchronizing clock
begins the first synchronization cycle of a read if the clock transition occurs at
time tSKEW1 or greater after the read. Otherwise, the subsequent clock cycle
can be the first synchronization cycle (see Figure 20, 21, 22, and 23).
ALMOST-EMPTY FLAGS (AEA, AEB)
The Almost-Empty flag of a FIFO is synchronized to the port clock that reads
data from its array. The state machine that controls an Almost-Empty flag monitors
a write pointer and read pointer comparator that indicates when the FIFO
memory status is almost-empty, almost-empty+1, or almost-empty+2. The
almost-empty state is defined by the contents of register X1 for AEB and register
X2 for AEA. These registers are loaded with preset values during a FIFO reset,
programmed from Port A, or programmed serially (see the Almost-Empty flag
and Almost-Full flag offset programming section). An Almost-Empty flag is LOW
when its FIFO contains X or less words and is HIGH when its FIFO contains
(X+1) or more words. A data word present in the FIFO output register has been
read from memory.
Two LOW-to-HIGH transitions of the Almost-Empty flag synchronizing clock
are required after a FIFO write for its Almost-Empty flag to reflect the new level
of fill. Therefore, the Almost-Full flag of a FIFO containing (X+1) or more words
remains LOW if two cycles of its synchronizing clock have not elapsed since the
write that filled the memory to the (X+1) level. An Almost-Empty flag is set HIGH
by the second LOW-to-HIGH transition of its synchronizing clock after the FIFO
write that fills memory to the (X+1) level. A LOW-to-HIGH transition of an Almost-
Empty flag synchronizing clock begins the first synchronization cycle if it occurs
at time tSKEW2 or greater after the write that fills the FIFO to (X+1) words.
Otherwise, the subsequent synchronizing clock cycle may be the first synchro-
nization cycle. (See Figure 24 and 25).
ALMOST-FULL FLAGS (AFA, AFC)
The Almost-Full flag of a FIFO is synchronized to the port clock that writes
data to its array. The state machine that controls an Almost-Full flag monitors a
write pointer and read pointer comparator that indicates when the FIFO memory
status is almost-full, almost-full-1, or almost-full-2. The almost-full state is defined
by the contents of register Y1 for AFA and register Y2 for AFC. These registers
are loaded with preset values during a FlFO reset, programmed from Port A,
or programmed serially (see Almost-Empty flag and Almost-Full flag offset
programming section). An Almost-Full flag is LOW when the number of words
in its FIFO is greater than or equal to (16,384-Y), (32,768-Y), or (65,536-Y)
for the IDT72V3686, IDT72V3696, or IDT72V36106 respectively. An Almost-
Full flag is HIGH when the number of words in its FIFO is less than or equal to
[16,384-(Y+1)], [32,768-(Y+1)], or [65,536-(Y+1)] for the IDT72V3686,
IDT72V3696, or IDT72V36106 respectively. Note that a data word present in
the FIFO output register has been read from memory.
Two LOW-to-HIGH transitions of the Almost-Full flag synchronizing clock are
required after a FIFO read for its Almost-Full flag to reflect the new level of fill.
Therefore, the Almost-Full flag of a FIFO containing [16,384/32,768/65,536-
(Y+1)] or less words remains LOW if two cycles of its synchronizing clock have
not elapsed since the read that reduced the number of words in memory to

IDT72V36106L15PF8

Mfr. #:
Manufacturer:
Description:
IC FIFO 131KX36 15NS 128QFP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union