Figure 7: Command Truth Table (Continued)
WSMA
WRITE SINGLE
BYTE MASK with
AUTO PRECHARGE
Operation
Symbol
WDMA
WRITE DOUBLE
BYTE MASK with
AUTO PRECHARGE
WRITE DOUBLE
BYTE MASK
WRTR
WRITE TRAINING
PREpb
REFpb/
REFp2b
PRECHARGE
PER-BANK REFRESH
REFab
REFRESH
PREab
PRECHARGE ALL
PDE
POWER-DOWN ENTRY
PDX
POWER-DOWN EXIT
SRE
SELF REFRESH ENTRY
SRX
SELF REFRESH EXIT
CAT
COMMAND/ADDRESS
TRAINING CAPTURE
R
F
R
F
R
F
CK
Edge
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
R
F
L
L
L
L
L
L
L
L
L
H
L
H
L
L
L
L
L
L
L
L
L
H
L
H
L
H
H
L
H
H
H
H
H
L
H
H
H
L
H
H
H
CA9
L
H
L
L
L
H
H
H
H
H
H
H
L
H
H
V
V
H
L
H
L
H
H
H
H
CA8
H
L
H
H
L
H
H
H
H
L
L
L
H
L
L
H
L
H
H
H
H
H
H
H
V
V
L
L
L
Byte 0
BST7
Byte 0
BST15
Byte 1
BST7
Byte 1
BST15
BA3
CA7
BA3
H
H
BA3
BST7
BST7
BST15
Byte 0
BST6
Byte 0
BST14
Byte 1
BST6
Byte 1
BST14
H
BA2
CA6
BA2
L
L
BA2
BST6
BST6
BST14
Byte 0
BST5
Byte 0
BST13
Byte 1
BST5
Byte 1
BST13
V
BA1
CA5
BA1
V
V
BA1
BST5
BST5
BST13
Byte 0
BST4
Byte 0
BST12
Byte 1
BST4
Byte 1
BST12
H
BA0
CA4
BA0
L
H
BA0
BST4
BST4
BST12
Byte 0
BST3
Byte 0
BST11
Byte 1
BST3
Byte 1
BST11
C3
CE
CA3
C3
CE
C3
CE
BST3
BST3
BST11
Byte 0
BST2
Byte 0
BST10
Byte 1
BST2
Byte 1
BST10
C2
C6
CA2
C2
C6
C2
C6
BST2
BST2
BST10
Byte 0
BST1
Byte 0
BST9
Byte 1
BST1
Byte 1
BST9
C1
C5
CA1
C1
C5
C1
C5
BST1
BST1
BST9
Byte 0
BST0
Byte 0
BST8
Byte 1
BST0
Byte 1
BST8
C0
C4
CA0
C0
C4
C0
C4
BST0
BST0
BST8
BST15
BST14
BST13
BST12
BST11
BST10
BST9
BST8
V
V
V
V
V
V
V
V
H
H
V
L
CE
V
V
V
V
V
V
V
BA3
BA3
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
BA2
BA2
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
BA1
BA1
V
V
V
V
V
V
V
V
V
V
V
V
L
L
H
H
BA0
BA0
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1, 2, 5,
6
Notes
1, 2, 5,
6
1, 2, 5,
6
1, 2, 6
1, 2, 9
1, 2, 7,
9
1, 2
1, 2, 7
1, 2
1, 2
1, 2, 7
1, 2
1, 2
n - 1
n
CKE_n
WDM
Notes:
1. H = Logic HIGH level; L = Logic LOW level; V = Valid signal (H or L, but not floating). R, F
= Rising, Falling CK clock edge.
8Gb: 2 Channels x16/x8 GDDR6 SGRAM
Functional Description
CCMTD-1412786195-10191
gddr6_sgram_8gb_brief.pdf - Rev. F 8/18 EN
10
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2016 Micron Technology, Inc. All rights reserved.
2. Values shown for CA[9:0] are logical values; the physical values are inverted when com-
mand/address bus inversion (CABI) is enabled and CABI_n = L.
3. M[3:0] provide the mode register address (MRA), OP[11:0] the opcode to be loaded.
4. BA[3:0] provide the bank address, R[13:0] provide the row address.
5. B[3:0] provide the bank address, C[6:0] provide the column address; no sub-word ad-
dressing within a burst of 16. BST[15:0] provide the write data mask for each burst posi-
tion with WDM(A) and WSM(A) commands.
6. CE (channel enable) is intended for PC mode. The command is active when CE = H.
When CE = L the data access is suppressed.
7. The command is REFRESH or PER-BANK REFRESH/PER-2-BANK REFRESH when CKE_n(n) =
L and SELF REFRESH ENTRY when CKE_n(n) = H.
8. B[3:0] select the burst position, and D[9:0] provide the data.
9. BA[3:0] provide the bank address.
10. All three encodings perform the same NOP. NOP (2) and NOP (3) encodings are only al-
lowed during CA Training.
Clamshell (x8) Mode Enable
A GDDR6 SGRAM-based memory system is typically divided into several channels.
GDDR6 has been optimized for a 16-bit-wide channel. A channel can be comprised of a
single device operated in x16 mode, or two devices each operated in x8 mode. For x8
mode the devices are typically assembled on opposite sides of the PCB in what is refer-
red as a clamshell layout.
Whether in x16 mode or x8 mode the device will operate with a point-to-point connec-
tion on the high-speed data signals. The disabled signals in x8 mode should all be in a
High-Z state, non-terminating.
The x8 mode is detected at power-up on EDC1_A and EDC0_B. For x8 mode these sig-
nals are tied to V
SS
; they are part of the bytes that are disabled in this mode and there-
fore not needed for EDC functionality. For x16 mode these signals are active and always
terminated to V
DDQ
in the system or by the controller.
The configuration is set with RESET_n going HIGH. Once the configuration has been
set, it cannot be changed during normal operation. Typically, the configuration is fixed
in the system. Details of the x8 mode detection are depicted in Figure 8. A comparison
of x16 mode and x8 mode systems is shown in Figure 9.
Table 4: Clamshell (x8) Mode Enable
Mode EDC0_A EDC1_A EDC0_B EDC1_B
x8 V
DDQ
V
SS
(on board) V
SS
(on board) V
DDQ
x16 V
DDQ
(terminated by the system or controller)
8Gb: 2 Channels x16/x8 GDDR6 SGRAM
Functional Description
CCMTD-1412786195-10191
gddr6_sgram_8gb_brief.pdf - Rev. F 8/18 EN
11
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2016 Micron Technology, Inc. All rights reserved.
Figure 8: Enabling Clamshell (x8) Mode
8Gb: 2 Channels x16/x8 GDDR6 SGRAM
Functional Description
CCMTD-1412786195-10191
gddr6_sgram_8gb_brief.pdf - Rev. F 8/18 EN
12
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2016 Micron Technology, Inc. All rights reserved.

MT61K256M32JE-14:A

Mfr. #:
Manufacturer:
Micron
Description:
DRAM GDDR6 8G 256MX32 FBGA
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union