AD9240
REV.
–15–
If the application requires the largest single-ended input range
(i.e., 0 V to 5 V) of the AD9240, the op amp will require larger
supplies to drive it. Various high speed amplifiers in the Op
Amp Selection Guide of this data sheet can be selected to
accommodate a wide range of supply options. Once again,
clamping the output of the amplifier should be considered for
these applications. Alternatively, a single-ended to differential
op amp driver circuit using the AD8042 could be used to
achieve the 5 V input span while operating from a single +5 V
supply as discussed in the previous section.
Two dc coupled op amp circuits using a noninverting and
inverting topology are discussed below. Although not shown,
the noninverting and inverting topologies can be easily config-
ured as part of an antialiasing filter by using a Sallen-Key or
Multiple-Feedback topology, respectively. An additional R-C
network can be inserted between the op amp’s output and the
AD9240 input to provide a real pole.
Simple Op Amp Buffer
In the simplest case, the input signal to the AD9240 will already
be biased at levels in accordance with the selected input range.
It is simply necessary to provide an adequately low source im-
pedance for the VINA and VINB analog input pins of the A/D.
Figure 35 shows the recommended configuration for a single-
ended drive using an op amp. In this case, the op amp is shown
in a noninverting unity gain configuration driving the VINA pin.
The internal reference drives the VINB pin. Note that the addi-
tion of a small series resistor of 30 to 50 connected to VINA
and VINB will be beneficial in nearly all cases. Refer to the
Analog Input Operation section for a discussion on resistor
selection. Figure 35 shows the proper connection for a 0 V to
5 V input range. Alternative single ended input ranges of 0 V to
2 × VREF can also be realized with the proper configuration of
VREF (refer to the section, Using the Internal Reference).
10mF
VINA
VINB
SENSE
AD9240
0.1mF
R
S
+V
–V
R
S
VREF
5V
0V
U1
2.5V
Figure 35. Single-Ended AD9240 Op Amp Drive Circuit
Op Amp with DC Level-Shifting
Figure 36 shows a dc-coupled level-shifting circuit employing an
op amp, A1, to sum the input signal with the desired dc offset.
Configuring the op amp in the inverting mode with the given
resistor values results in an ac signal gain of –1. If the signal
inversion is undesirable, interchange the VINA and VINB con-
nections to reestablish the original signal polarity. The dc volt-
age at VREF sets the common-mode voltage of the AD9240. For
example, when VREF = 2.5 V, the output level from the op amp
will also be centered around 2.5 V. The use of ratio matched,
thin-film resistor networks will minimize gain and offset errors.
An optional pull-up resistor, R
P
, may also be used to reduce the
output load on VREF to ±1 mA.
0V
DC
+VREF
–VREF
VINA
VINB
AD9240
0.1mF
500V*
0.1mF
500V*
A1
NC
NC
+V
CC
500V*
R
S
VREF
500V*
R
S
R
P
**
AVDD
*OPTIONAL RESISTOR NETWORK-OHMTEK ORNA500D
**OPTIONAL PULL-UP RESISTOR WHEN USING INTERNAL REFERENCE
Figure 36. Single-Ended Input With DC-Coupled Level-Shift
AC COUPLING AND INTERFACE ISSUES
For applications where ac coupling is appropriate, the op amp’s
output can be easily level-shifted to the common-mode voltage,
V
CM
, of the AD9240 via a coupling capacitor. This has the
advantage of allowing the op amps common-mode level to be
symmetrically biased to its midsupply level (i.e., (V
CC
+ V
EE
)/
2). Op amps that operate symmetrically with respect to their
power supplies typically provide the best ac performance as well
as greatest input/output span. Hence, various high speed/
performance amplifiers that are restricted to +5 V/–5 V op-
eration and/or specified for +5 V single-supply operation can be
easily configured for the 5 V or 2 V input span of the AD9240,
respectively. The best ac distortion performance is achieved
when the A/D is configured for a 2 V input span and common-
mode voltage of 2.5 V. Note that differential transformer
coupling, which is another form of ac coupling, should be
considered for optimum ac performance.
Simple AC Interface
Figure 37 shows a typical example of an ac-coupled, single-
ended configuration. The bias voltage shifts the bipolar,
ground-referenced input signal to approximately VREF. The
value for C1 and C2
will depend on the size of the resistor, R.
The capacitors, C1 and C2, are typically a 0.1 µF ceramic and
10 µF tantalum capacitor in parallel to achieve a low cutoff
frequency while maintaining a low impedance over a wide fre-
quency range. The combination of the capacitor and the resistor
form a high-pass filter with a high-pass –3 dB frequency deter-
mined by the equation,
f
–3 dB
= 1/(2 × π × R × (C1 + C2))
C2
VINA
VINB
SENSE
AD9240
C1
R
+5V
–5V
R
S
VREF
+VREF
0V
–VREF
V
IN
C2
C1
R
S
Figure 37. AC-Coupled Input
The low impedance VREF voltage source biases both the VINB
input and provides the bias voltage for the VINA input. Figure
37 shows the VREF configured for 2.5 V. Thus the input range
of the A/D is 0 V to 5 V. Other input ranges could be selected
by changing VREF but the A/D’s distortion performance will
B
AD9240
REV.
–16–
degrade slightly as the input common-mode voltage deviates
from its optimum level of 2.5 V.
Alternative AC Interface
Figure 38 shows a flexible ac-coupled circuit which can be con-
figured for different input spans. Since the common-mode
voltage of VINA and VINB are biased to midsupply indepen-
dent of VREF, VREF can be pin-strapped or reconfigured to
achieve input spans between 2 V and 5 V p-p. The AD9240’s
CMRR along with the symmetrical coupling R-C networks will
reject both power supply variations and noise. The resistors, R,
establish the common-mode voltage. They may have a high value
(e.g., 5 k) to minimize power consumption and establish a low
cutoff frequency. The capacitors, C1
and C2, are typically a
0.1 µF ceramic and 10 µF tantalum capacitor in parallel to
achieve a low cutoff frequency while maintaining a low imped-
ance over a wide frequency range. R
S
isolates the buffer ampli-
fier from the A/D input. The optimum performance is achieved
when VINA and VINB are driven via symmetrical networks.
The high pass f
–3 dB
point can be approximated by the equation,
f
–3 dB
= 1/(2 × π × R/2 × (C1 + C2))
C2
VINA
VINB
AD9240
C1
R
+5V
–5V
R
S
V
IN
C1
C2
R
R
S
+5V
R
R
+5V
Figure 38. AC-Coupled Input-Flexible Input Span,
V
CM
= 2.5 V
OP AMP SELECTION GUIDE
Op amp selection for the AD9240 is highly dependent on a
particular application. In general, the performance requirements
of any given application can be characterized by either time
domain or frequency domain parameters. In either case, one
should carefully select an op amp that preserves the perfor-
mance of the A/D. This task becomes challenging when one
considers the AD9240’s high performance capabilities coupled
with other external system level requirements such as power
consumption and cost.
The ability to select the optimal op amp may be further compli-
cated by limited power supply availability and/or limited accept-
able supplies for a desired op amp. Newer, high performance op
amps typically have input and output range limitations in accor-
dance with their lower supply voltages. As a result, some op
amps will be more appropriate in systems where ac-coupling is
allowable. When dc-coupling is required, op amps without
headroom constraints such as rail-to-rail op amps or ones where
larger supplies can be used should be considered. The following
section describes some op amps currently available from Analog
Devices. The system designer is always encouraged to contact
the factory or local sales office to be updated on Analog De-
vices’ latest amplifier product offerings. Highlights of the areas
where the op amps excel and where they may limit the perfor-
mance of the AD9240 are also included.
AD9631: 220 MHz Unity GBW, 16 ns Settling to 0.01%,
±5 V Supplies
Best Applications: Best AC Specs, Low Noise,
AC-Coupled
Limits: Usable Input/Output Range, Power
Consumption
AD8047: 130 MHz Unity GBW, 30 ns Settling to 0.01%,
±5 V Supplies
Best Applications: Good AC Specs, Low Noise,
AC-Coupled
Limits: THD > 5 MHz, Usable Input Range
AD8042: Dual AD8041
Best Applications: Differential and/or Low Imped-
ance Input Drivers
Limits: Noise with 2 V Input Range
REFERENCE CONFIGURATIONS
For the purpose of simplicity, the figures associated with this
section on internal and external reference operation do not
show recommended matching series resistors for VINA and
VINB. Please refer to section Driving the Analog Inputs, Intro-
duction, for a discussion of this topic. The figures do not show
the decoupling network associated with the CAPT and CAPB
pins. Please refer to the Reference Operation section for a discus-
sion of the internal reference circuitry and the recommended
decoupling network shown in Figure 30.
USING THE INTERNAL REFERENCE
Single-Ended Input with 0 to 2 VREF Range
Figure 39 shows how to connect the AD9240 for a 0 V to 2 V or
0 V to 5 V input range via pin strapping the SENSE pin. An
intermediate input range of 0 to 2 × VREF can be established
using the resistor programmable configuration in Figure 41 and
connecting VREF to VINB.
10mF
VINA
VREF
AD9240
0.1mF
VINB
2xVREF
0V
SHORT FOR 0 TO 2V
INPUT SPAN
SENSE
SHORT FOR 0 TO 5V
INPUT SPAN
REFCOM
Figure 39. Internal Reference (2 V p-p Input Span,
V
CM
= 1 V, or 5 V p-p Input Span, V
CM
= 2.5 V)
In either case, both the common-mode voltage and input span
are directly dependent on the value of VREF. More specifically,
the common-mode voltage is equal to VREF while the input
span is equal to 2 × VREF. Thus, the valid input range extends
from 0 to 2 × VREF. When VINA is 0 V, the digital output
will be 0000 Hex; when VINA is 2 × VREF, the digital output
will be 3FFF Hex.
Shorting the VREF pin directly to the SENSE pin places the
internal reference amplifier in unity-gain mode and the result-
ant VREF output is 1 V. The valid input range is, therefore, 0 V
to 2 V. Shorting the SENSE pin directly to the REFCOM pin
configures the internal reference amplifier for a gain of 2.5 and
B
AD9240
REV.
–17–
the resultant VREF output is 2.5 V. The valid input range thus
becomes 0 V to 5 V. The VREF pin should be bypassed to the
REFCOM pin with a 10 µF tantalum capacitor in parallel with a
low-inductance 0.1 µF ceramic capacitor.
Single-Ended or Differential Input, V
CM
= 2.5 V
Figure 37 shows the single-ended configuration that gives the
best SINAD performance. To optimize dynamic specifications,
center the common-mode voltage of the analog input at
approximately by 2.5 V by connecting VINB to VREF, a low-
impedance 2.5 V source. As described above, shorting the
SENSE pin directly to the REFCOM pin results in a 2.5 V
reference voltage and a 5 V p-p input span. The valid range
for input signals is 0 V to 5 V. The VREF pin should be by-
passed to the REFCOM pin with a 10 µF tantalum capacitor in
parallel with a low inductance 0.1 µF ceramic capacitor.
This reference configuration could also be used for a differential
input in which VINA and VINB are driven via a transformer as
shown in Figure 32. In this case, the common-mode voltage,
V
CM
, is set at midsupply by connecting the transformer’s center
tap to CML of the AD9240. VREF can be configured for 1 V
or 2.5 V by connecting SENSE to either VREF or REFCOM
respectively. Note that the valid input range for each of the
differential inputs is one half of the single-ended input and thus
becomes V
CM
– VREF/2 to V
CM
+ VREF/2.
0.1mF
10mF
VINA
VINB
VREF
SENSE
REFCOM
AD9240
5V
0V
2.5V
Figure 40. Internal Reference—5 V p-p Input Span,
V
CM
= 2.5 V
Resistor Programmable Reference
Figure 41 shows an example of how to generate a reference
voltage other than 1 V or 2.5 V with the addition of two external
resistors and a bypass capacitor. Use the equation,
VREF = 1 V × (1 + R1/R2),
to determine appropriate values for R1 and R2. These resistors
should be in the 2 k to 100 k range. For the example
shown, R1 equals 2.5 k and R2 equals 5 k. From the equa-
tion above, the resultant reference voltage on the VREF pin is
1.5 V. This sets the input span to be 3 V p-p. To assure stabil-
ity, place a 0.1 µF ceramic capacitor in parallel with R1.
The common-mode voltage can be set to VREF by connecting
VINB to VREF to provide an input span of 0 to 2 × VREF.
Alternatively, the common-mode voltage can be set to 2.5 V
by connecting VINB to a low impedance 2.5 V source. For
the example shown, the valid input signal range for VINA is 1 V
to 4 V since VINB is set to an external, low impedance 2.5 V
source. The VREF pin should be bypassed to the REFCOM pin
with a 10 µF tantalum capacitor in parallel with a low induc-
tance 0.1 µF ceramic capacitor.
1.5V
C1
0.1mF
10mF
VINA
VINB
VREF
SENSE
REFCOM
AD9240
4V
1V
2.5V
R1
2.5kV
R2
5kV
0.1mF
Figure 41. Resistor Programmable Reference (3 V p-p
Input Span, V
CM
= 2.5 V)
USING AN EXTERNAL REFERENCE
Using an external reference may enhance the dc performance of
the AD9240 by improving drift and accuracy. Figures 42
through 44 show examples of how to use an external reference
with the A/D. Table III is a list of suitable voltage references
from Analog Devices. To use an external reference, the user
must disable the internal reference amplifier and drive the
VREF pin. Connecting the SENSE pin to AVDD disables the
internal reference amplifier.
Table III. Suitable Voltage References
Initial Operating
Output Drift Accuracy Current
Voltage (ppm/C) % (max) (A)
Internal 1.00 26 1.4 N/A
REF191 2.048 5–25 0.1–0.5 45
Internal 2.50 26 1.4 N/A
REF192 2.50 5–25 0.08–0.4 45
AD780 2.50 3–7 0.04–0.2 1000
The AD9240 contains an internal reference buffer, A2 (see
Figure 29), that simplifies the drive requirements of an external
reference. The external reference must be able to drive a 5 k
(±20%) load. Note that the bandwidth of the reference buffer is
deliberately left small to minimize the reference noise contribu-
tion. As a result, it is not possible to change the reference volt-
age rapidly in this mode without the removal of the CAPT/
CAPB Decoupling Network, and driving these pins directly.
B

AD9240ASRL

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC Complete 14B 10 MSPS Monolithic
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet